cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234870 4*binomial(11*n+4,n)/(11*n+4).

Original entry on oeis.org

1, 4, 50, 840, 16215, 339416, 7492342, 171714400, 4046995095, 97464474800, 2388021782916, 59337354111464, 1491714713034000, 37872300445759440, 969656048236053850, 25008097347083474496, 649098691321081570855, 16942574600154870074100
Offset: 0

Views

Author

Tim Fulford, Jan 01 2014

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=11, r=4.

Crossrefs

Programs

  • Magma
    [4*Binomial(11*n+4,n)/(11*n+4): n in [0..30]]; // Vincenzo Librandi, Jan 01 2014
  • Mathematica
    Table[4 Binomial[11 n + 4, n]/(11 n + 4), {n, 0, 40}] (* Vincenzo Librandi, Jan 01 2014 *)
  • PARI
    a(n) = 4*binomial(11*n+4,n)/(11*n+4);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(11/4))^4+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, with p=11, r=4.