cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234933 The number of binary sequences that contain at least two consecutive 1's and contain at least two consecutive 0's.

Original entry on oeis.org

0, 0, 0, 0, 2, 8, 24, 62, 148, 336, 738, 1584, 3344, 6974, 14412, 29576, 60370, 122712, 248616, 502398, 1013156, 2039840, 4101570, 8238560, 16534432, 33161598, 66473244, 133189272, 266771378, 534178376, 1069385208, 2140434494, 4283561524, 8571479664, 17150008482, 34311422736, 68641300400
Offset: 0

Views

Author

Geoffrey Critzer, Jan 01 2014

Keywords

Examples

			a(5) = 8 because we have:
1: {0, 0, 0, 1, 1},
2: {0, 0, 1, 1, 0},
3: {0, 0, 1, 1, 1},
4: {0, 1, 1, 0, 0},
5: {1, 0, 0, 1, 1},
6: {1, 1, 0, 0, 0},
7: {1, 1, 0, 0, 1},
8: {1, 1, 1, 0, 0}.
		

Crossrefs

Programs

  • Magma
    I:=[0,0,0,0,2]; [n le 5 select I[n] else 4*Self(n-1)-4*Self(n-2)-Self(n-3)+2*Self(n-4): n in [1..40]]; // Vincenzo Librandi, Dec 28 2018
  • Mathematica
    nn = 25; a = (x + x^2)/(1 - x^2); b = 1/(1 - 2x); c = 1/(1 - x - x^2); CoefficientList[Series[2x^3 a b c, {x, 0, nn}], x]
    (* or *)
    Table[Length[Select[Tuples[{0, 1}, n], MatchQ[#, {_, 1, 1, _}] && MatchQ[#, {_, 0, 0, _}] &]], {n, 0, 15}]
    Join[{0}, LinearRecurrence[{4, -4, -1, 2}, {0, 0, 0, 2}, 40]] (* Vincenzo Librandi, Dec 28 2018 *)
  • PARI
    concat([0,0,0,0],Vec(2*x^4/(1-4*x+4*x^2+x^3-2*x^4)+O(x^66))) \\ Joerg Arndt, Jan 04 2014
    

Formula

a(n) = 2*A232580(n-1) for n>0.
G.f.: 2*x^4/(1 - 4*x + 4*x^2 + x^3 - 2*x^4).
From Colin Barker, Nov 03 2016: (Start)
a(n) = 2^(-n)*(5*2^n*(2+2^n)+(1-sqrt(5))^n*(-5+3*sqrt(5))-(1+sqrt(5))^n*(5+3*sqrt(5)))/5 for n>0.
a(n) = 4*a(n-1)-4*a(n-2)-a(n-3)+2*a(n-4) for n>4.
(End)
a(n) = 2*(A000079(n-1)-A000045(n+2)+1) for n>0. - Ehren Metcalfe, Dec 27 2018