A234936 a(n) is the smallest composite n-Lehmer number.
561, 15, 451, 51, 679, 255, 2091, 771, 43435, 3855, 31611, 13107, 272163, 65535, 494211, 196611, 2089011, 983055, 8061051, 3342387, 31580931, 16711935, 126027651, 50529027, 756493591, 252645135, 4446487299, 858993459, 8053383171, 4294967295, 32212942851
Offset: 2
Keywords
Examples
a(3) = 15 because 15 is the smallest n such that phi(n) divides (n-1)^3 and does not divide (n-1)^2, i.e., it is the smallest 3-Lehmer number.
Links
- Giovanni Resta, Table of n, a(n) for n = 2..36
- José María Grau and Antonio M. Oller-Marcén, On k-Lehmer numbers, arXiv:1012.2337 [math.NT], 2010-2012.
- José María Grau and Antonio M. Oller-Marcén, On k-Lehmer numbers, Integers, 12(2012), #A37.
- Nathan McNew, Radically weakening the Lehmer and Carmichael conditions, arXiv:1210.2001 [math.NT], 2012; International Journal of Number Theory 9 (2013), 1215-1224.
Programs
-
Mathematica
a[n_] := a[n] = For[k = 2, True, k++, If[CompositeQ[k], phi = EulerPhi[k]; If[Divisible[(k-1)^n, phi], If[!Divisible[(k-1)^(n-1), phi], Return[k] ]]]]; Table[Print[n, " ", a[n]]; a[n], {n, 2, 20}] (* Jean-François Alcover, Jan 26 2019 *)
-
PARI
a(n) = {x = 2; while (!(!((x-1)^n % eulerphi(x)) && ((x-1)^(n-1) % eulerphi(x))), x++); x;} \\ Michel Marcus, Jan 26 2014
Comments