A234959 Highest power of 6 dividing n.
1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 36, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 36, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6
Offset: 1
Examples
Since 12 = 6 * 2, a(12) = 6. Likewise, since 6 does not divide 13, a(13) = 1.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Tyler Ball, Tom Edgar, and Daniel Juda, Dominance Orders, Generalized Binomial Coefficients, and Kummer's Theorem, Mathematics Magazine, Vol. 87, No. 2, April 2014, pp. 135-143.
Programs
-
Haskell
a234959 = f 1 where f y x = if m == 0 then f (y * 6) x' else y where (x', m) = divMod x 6 -- Reinhard Zumkeller, Feb 09 2015
-
Mathematica
6^Table[IntegerExponent[n, 6], {n, 84}] (* Alonso del Arte, Jan 01 2014 *)
-
PARI
a(n)=6^valuation(n,6) \\ Charles R Greathouse IV, Aug 05 2015
-
Sage
n=200 #change n for more terms [6^(valuation(i,6)) for i in [1..n]]
Formula
a(n) = 6^(valuation(n,6)).
a(n) = 6^A122841(n). - Joerg Arndt, Jan 02 2014
G.f.: x/(1 - x) + 5 * Sum_{k>=1} 6^(k-1)*x^(6^k)/(1 - x^(6^k)). - Ilya Gutkovskiy, Jul 10 2019
Comments