cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A235115 Number of independent vertex subsets of the graph obtained by attaching two pendant edges to each vertex of the star graph S_n (having n vertices; see A235114).

Original entry on oeis.org

5, 24, 116, 564, 2756, 13524, 66596, 328884, 1628036, 8074644, 40111076, 199506804, 993339716, 4949921364, 24682497956, 123144054324, 614646529796, 3068937681684, 15327508539236, 76568823219444, 382569238190276, 1911746679323604, 9554335350106916, 47754084564490164, 238700054078273156
Offset: 1

Views

Author

Emeric Deutsch, Jan 13 2014

Keywords

Comments

a(n) is the sum of the entries of row n of the triangle A235114.

Examples

			a(1)=5; indeed, S_1 is the one-vertex graph and after attaching two pendant vertices we obtain the path graph ABC; the independent vertex subsets are: empty, {A}, {B}, {C}, and {A,C}.
		

Crossrefs

Cf. A235118.

Programs

  • Magma
    [4*5^(n-1)+2^(2*n-2): n in [1..25]]; // Vincenzo Librandi, Aug 01 2017
  • Maple
    seq(4*5^(n-1)+2^(2*n-2), n = 1 .. 27);
  • Mathematica
    Rest@ CoefficientList[Series[x (5 - 21 x)/((1 - 4 x) (1 - 5 x)), {x, 0, 25}], x] (* or *)
    LinearRecurrence[{9, -20}, {5, 24}, 25] (* Michael De Vlieger, Jul 31 2017 *)
  • PARI
    Vec(x*(5 - 21*x) / ((1 - 4*x)*(1 - 5*x)) + O(x^30)) \\ Colin Barker, Jul 31 2017
    

Formula

a(n) = 4*5^(n-1) + 2^(2*n-2) for n>=1.
G.f.: x*(5 - 21*x)/((1 - 4*x)*(1 - 5*x)).
a(n) = 9*a(n-1) - 20*a(n-2) for n>1. - Colin Barker, Jul 31 2017

A235117 Irregular triangle read by rows: T(n,k) = number of independent vertex subsets of size k of the graph g_n obtained by attaching two pendant edges to each vertex of the ladder graph L_n (i.e., L_n is the 2 X n grid graph; 0 <= k <= 4n+1).

Original entry on oeis.org

1, 1, 6, 10, 6, 1, 1, 12, 54, 124, 162, 124, 54, 12, 1, 1, 18, 134, 556, 1451, 2530, 3036, 2530, 1451, 556, 134, 18, 1, 1, 24, 250, 1516, 6042, 16892, 34430, 52352, 60122, 52352, 34430, 16892, 6042, 1516, 250, 24, 1, 1, 30, 402, 3220, 17393, 67676, 197588, 444584, 784702, 1098826, 1228500, 1098826, 784702, 444584, 197588, 67676, 17393, 3220, 402, 30, 1
Offset: 0

Views

Author

Emeric Deutsch, Jan 14 2014

Keywords

Comments

Each row is palindromic (see the Stevanovic and Mandrescu references).
Row n (n >= 0) contains 4n+1 entries.
Sum of entries in row n = A235118(n).
In the Maple program, P(n) gives the independence polynomial of the graph g_n.

Examples

			Triangle begins:
1;
1,6,10,6,1;
1,12,54,124,162,124,54,12,1;
1,18,134,556,1451,2530,3036,2530,1451,556,134,18,1;
		

Crossrefs

Cf. A235118.

Programs

  • Maple
    P := proc (n) option remember: if n = 0 then 1 elif n = 1 then sort(expand((1+x)^2*(1+4*x+x^2))) else sort(expand((1+x)^2*(1+3*x+x^2)*P(n-1) +x*(1+x)^6*P(n-2))) end if end proc: for n from 0 to 5 do seq(coeff(P(n), x, i), i = 0 .. 4*n) end do; # yields sequence in triangular form

Formula

Generating polynomial P(n) of row n (i.e., the independence polynomial of the graph g_n) satisfies the recurrence relation P(n) = (1 + x)^2*(1 + 3x + x^2)P(n-1) + x(1 + x)^6 *P(n-2); P(0)=1; P(1)=(1 + 4x + x^2)*(1 + x)^2.
Showing 1-2 of 2 results.