cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A196265 Number of standard puzzles of shape 2 X n with support CK (see reference for precise definition).

Original entry on oeis.org

1, 2, 4, 8, 26, 66, 276, 816, 4050, 13410, 75780, 274680, 1723050, 6735330, 46104660, 192296160, 1418802210, 6264006210, 49355252100, 229233450600, 1914861598650, 9309854203650, 81969299111700, 415483465597200, 3837397323409650, 20209910950879650
Offset: 1

Views

Author

N. J. A. Sloane, Oct 27 2011

Keywords

Comments

The Han reference contains many sequences not yet in the OEIS (as well as over 100 that are). This is the first one that was not already in the OEIS.
The sequence appears on pages 4 and 13 of the Han reference. a(1)=1 by convention. - Michael Somos, Jan 16 2014

Examples

			G.f. = x + 2*x^2 + 4*x^3 + 8*x^4 + 26*x^5 + 66*x^6 + 276*x^7 + 816*x^8 + ...
		

Crossrefs

Cf. A235136.

Programs

  • Mathematica
    a[ n_] := If[ n < 2, Boole[n == 1], With[{m = Mod[n, 2]}, 2^(n - m) (Pochhammer[ 1/4 + m/2, (n - m)/2] - (-1)^ m Pochhammer[ -1/4 + m/2, (n - m)/2]) ]]; (* Michael Somos, Jan 16 2014 *)
  • PARI
    {a(n) = my(v=[1, 1]); if( n<2, n==1, for(k=1, n-1, v = [v[2], v[1] * (2*k-1)]); v[1] + v[2])}; /* Michael Somos, Jan 16 2014 */

Formula

a(n) = A235136(n-1) + A235136(n-2) if n > 1. - Michael Somos, Jan 16 2014
E.g.f. A(x) =: y satisfies 0 = -(1 + x)^2 + y * x - y' * (1 + 2*x + 2*x^2) + y'' * (1 + x) = (1 - x) + y' * (1 - x) - y'' * (1 + 2*x^2) + y''' * x. - Michael Somos, Jan 16 2014

A249100 Triangular array read by rows: row n gives the coefficients of the polynomial p(n,x) defined in Comments.

Original entry on oeis.org

1, 3, 1, 5, 3, 1, 21, 12, 3, 1, 45, 48, 21, 3, 1, 231, 177, 81, 32, 3, 1, 585, 855, 450, 120, 45, 3, 1, 3465, 3240, 2070, 930, 165, 60, 3, 1, 9945, 18000, 10890, 4110, 1695, 216, 77, 3, 1, 65835, 71505, 57330, 28560, 7245, 2835, 273, 96, 3, 1, 208845, 443835, 300195, 143640, 64155, 11781, 4452, 336, 117, 3, 1
Offset: 0

Views

Author

Clark Kimberling, Oct 21 2014

Keywords

Comments

The polynomial p(n,x) is the numerator of the rational function given by f(n,x) = x + (2*n+1)/f(n-1,x), where f(0,x) = 1.
(Sum of numbers in row n) = A249101(n) for n >= 0.
(n-th term of column 1) = A235136(n) for n >= 1.

Examples

			f(0,x) = 1/1, so that p(0,x) = 1;
f(1,x) = (3 + x)/1, so that p(1,x) = 3 + x;
f(2,x) = (5 + 3*x + x^2)/(3 + x), so that p(2,x) = 5 + 3*x + x^2.
First 6 rows of the triangle of coefficients:
    1;
    3,   1;
    5,   3,   1;
   21,  12,   3,   1;
   45,  48,  21,   3,   1;
  231, 177,  81,  32,   3,   1;
		

Crossrefs

Programs

  • Mathematica
    z = 11; p[x_, n_] := x + (2 n - 1)/p[x, n - 1]; p[x_, 1] = 1;
    t = Table[Factor[p[x, n]], {n, 1, z}]
    u = Numerator[t]
    TableForm[Table[CoefficientList[u[[n]], x], {n, 1, z}]] (* A249100 array *)
    Flatten[CoefficientList[u, x]] (* A249100 sequence *)
    v = u /. x -> 1  (* A249101 *)
    u /. x -> 0  (* A235136 *)
    T[ n_Integer, k_Integer] := (T[n, k] = If[n<2, Boole[0==k], T[n-1, k-1] + (2*n-1)*T[n-2 ,k] ]); Join @@ Table[T[n, k], {n, 10}, {k, 0, n-1}] (* Michael Somos, Oct 27 2022 *)

Formula

T(n, k) = T(n-1, k-1) + (2*n-1)*T(n-2, k). - Michael Somos, Oct 27 2022
Showing 1-2 of 2 results.