cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A235145 a(n) = Number of steps to reach a fixed point or 2-cycle, when iterating A235027 starting from value n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2
Offset: 0

Views

Author

Antti Karttunen, Jan 03 2014

Keywords

Comments

Equally, a(n) = minimum number of steps needed to repeat k = A235027(k)(starting from k = n) until A001222(A235027(k)) = A001222(k).
Or in other words, how many times are needed to repeatedly factorize the number, to reverse the bits of each odd prime factor (with A056539) and factorize and bit-reverse the reversed factors again, until the number of prime divisors no more grows, meaning that we have found either a fixed point or entered a cycle of two.

Examples

			19, '10011' in binary, when reversed, yields '11001' = 25, when factored, yields 5 * 5, ('101' * '101' in binary), which divisors stay same when reversed, thus it took one iteration step to reach a point where the number of prime divisors no more grows. Thus a(19)=1.
		

Crossrefs

A235146 gives the positions of records. Cf. A001222, A056539, A074832, A235027.

Programs

  • PARI
    revbits(n) = fromdigits(Vecrev(binary(n)), 2);
    a235027(n) = {f = factor(n); for (k=1, #f~, if (f[k,1] != 2, f[k,1] = revbits(f[k,1]););); factorback(f);}
    find(v, newn) = {for (k=1, #v, if (v[#v -k + 1] == newn, return (k));); return (0);}
    a(n) = {ok = 0; v = [n]; while (! ok, newn = a235027(n); ind = find(v, newn); if (ind, ok = 1, v = concat(v, newn); n = newn);); #v - ind;} \\ Michel Marcus, Aug 06 2017

Formula

If A235027(A235027(n)) = n, a(n)=0, otherwise 1+a(A235027(n)).
Equally, if A001222(A235027(n)) = A001222(n), a(n)=0, otherwise 1+a(A235027(n)).
a(2n) = a(n), and in general, for composite values a(u * v) = max(a(u),a(v)).
For composite n, a(n) = Max_{p|n} a(p). [The above reduces to this: select the maximal value from all values a(p) computed for primes p dividing n]
For prime p, a(p) = 0 if A056539(p) is also prime (p is 2 or in A074832), otherwise a(p) = 1+a(A056539(p)).