cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A235168 Triangle read by rows: row n gives digits of n in primorial base.

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 2, 0, 2, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 2, 0, 1, 2, 1, 2, 0, 0, 2, 0, 1, 2, 1, 0, 2, 1, 1, 2, 2, 0, 2, 2, 1, 3, 0, 0, 3, 0, 1, 3, 1, 0, 3, 1, 1, 3, 2, 0, 3, 2, 1, 4, 0, 0, 4, 0, 1, 4, 1, 0, 4, 1, 1, 4, 2, 0, 4, 2, 1, 1, 0, 0, 0
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 05 2014

Keywords

Comments

T(n,k) = A108731(n,k) for k=0..23.
a(n) = A108731(n) for n=0..63, when both tables are seen as flattened lists.
T(n,k) < 10 for k = 1..A235224(n) and n < 2100 = 10 * 7#.
When read from right to left, the row n gives exponents for successive primes 2, 3, 5, 7, 11, etc., in A276086(n). - Antti Karttunen, Mar 15 2021

Examples

			.        n | .. + _*7# + _*5# + _*3# + _*2# + _*1# | row(n)
. ---------+---------------------------------------+---------------------
.       10 | 1*6 + 2*2 + 0*1                       | [1,2,0], A276086(10) = 5 * 3^2
.      100 | 3*30 + 1*6 + 2*2 + 0*1                | [3,1,2,0]
.     1000 | 4*210 + 5*30 + 1*6 + 2*2n + 0*1       | [4,5,1,2,0]
.     2099 | 9*210 + 6*30 + 4*6 + 2*2 + 1*1        | [9,6,4,2,1]
.     2100 | 10*210 + 0*30 + 0*6 + 0*2 + 0*1       | [10,0,0,0,0]
.    10000 | 4*2310 + 3*210 + 4*30 + 1*6 + 2*2     | [4,3,4,1,2,0]
.   100000 | 3*30030+4*2310+3*210+1*30+1*6+2*2+0*1 | [3,4,3,1,1,2,0]
.  1000000 |                                       | [1,16,3,9,6,1,2,0]
. 10000000 |                                       | [1,0,10,0,0,0,1,2,0]
.  1000000 = 1*510510+16*30030+3*2310+9*210+6*30+1*6+2*2+0*1
. 10000000 = 1*9699690+0*510510+10*30030+0*2310+0*210+0*30+1*6+2*2+0*1
		

Crossrefs

Cf. A002110, A049345, A108731, A235224 (row lengths), A276086.

Programs

  • Haskell
    a235168 n k = a235168_row n !! k
    a235168_row 0 = [0]
    a235168_row n = t n $ reverse $ takeWhile (<= n) a002110_list
       where t 0 []     = []
             t x (b:bs) = x' : t m bs where (x', m) = divMod x b
    a235168_tabf = map a235168_row [0..]
  • Mathematica
    row[n_] := Module[{k = n, p = 2, s = {}, r}, While[{k, r} = QuotientRemainder[k, p]; k != 0 || r != 0, AppendTo[s, r]; p = NextPrime[p]]; Reverse[s]]; row[0] = {0}; Array[row, 31, 0] // Flatten (* Amiram Eldar, Mar 11 2024 *)