A235168 Triangle read by rows: row n gives digits of n in primorial base.
0, 1, 1, 0, 1, 1, 2, 0, 2, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 2, 0, 1, 2, 1, 2, 0, 0, 2, 0, 1, 2, 1, 0, 2, 1, 1, 2, 2, 0, 2, 2, 1, 3, 0, 0, 3, 0, 1, 3, 1, 0, 3, 1, 1, 3, 2, 0, 3, 2, 1, 4, 0, 0, 4, 0, 1, 4, 1, 0, 4, 1, 1, 4, 2, 0, 4, 2, 1, 1, 0, 0, 0
Offset: 0
Examples
. n | .. + _*7# + _*5# + _*3# + _*2# + _*1# | row(n) . ---------+---------------------------------------+--------------------- . 10 | 1*6 + 2*2 + 0*1 | [1,2,0], A276086(10) = 5 * 3^2 . 100 | 3*30 + 1*6 + 2*2 + 0*1 | [3,1,2,0] . 1000 | 4*210 + 5*30 + 1*6 + 2*2n + 0*1 | [4,5,1,2,0] . 2099 | 9*210 + 6*30 + 4*6 + 2*2 + 1*1 | [9,6,4,2,1] . 2100 | 10*210 + 0*30 + 0*6 + 0*2 + 0*1 | [10,0,0,0,0] . 10000 | 4*2310 + 3*210 + 4*30 + 1*6 + 2*2 | [4,3,4,1,2,0] . 100000 | 3*30030+4*2310+3*210+1*30+1*6+2*2+0*1 | [3,4,3,1,1,2,0] . 1000000 | | [1,16,3,9,6,1,2,0] . 10000000 | | [1,0,10,0,0,0,1,2,0] . 1000000 = 1*510510+16*30030+3*2310+9*210+6*30+1*6+2*2+0*1 . 10000000 = 1*9699690+0*510510+10*30030+0*2310+0*210+0*30+1*6+2*2+0*1
Links
Programs
-
Haskell
a235168 n k = a235168_row n !! k a235168_row 0 = [0] a235168_row n = t n $ reverse $ takeWhile (<= n) a002110_list where t 0 [] = [] t x (b:bs) = x' : t m bs where (x', m) = divMod x b a235168_tabf = map a235168_row [0..]
-
Mathematica
row[n_] := Module[{k = n, p = 2, s = {}, r}, While[{k, r} = QuotientRemainder[k, p]; k != 0 || r != 0, AppendTo[s, r]; p = NextPrime[p]]; Reverse[s]]; row[0] = {0}; Array[row, 31, 0] // Flatten (* Amiram Eldar, Mar 11 2024 *)
Comments