A235224 a(0) = 0, and for n > 0, a(n) = largest k such that A002110(k-1) <= n, where A002110(k) gives the k-th primorial number.
0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 0
Keywords
Links
Crossrefs
Programs
-
Haskell
a235224 n = length $ takeWhile (<= n) a002110_list
-
Maple
A235224 := proc(n) local k; if n = 0 then 0; else for k from 0 do if A002110(k-1) > n then return k-1 ; end if; end do: end if; end proc: # R. J. Mathar, Apr 19 2021
-
Mathematica
primorial[n_] := Times @@ Prime[Range[n]]; a[n_] := TakeWhile[primorial /@ Range[0, n], # <= n &] // Length; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Oct 27 2021 *)
-
PARI
A235224(n) = { my(s=0, p=2); while(n, s++; n = n\p; p = nextprime(1+p)); (s); }; \\ Antti Karttunen, Oct 19 2019
-
PARI
A235224(n, p=2) = if(!n,n,if(n
A235224(n\p, nextprime(p+1)))); \\ (Recursive implementation) - Antti Karttunen, Oct 19 2019
Formula
Extensions
Name corrected to match the data by Antti Karttunen, Oct 19 2019
Comments