cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A235333 a(n) is the smallest k such that Sum_{i=0..k} 1/A001316(i) >= n.

Original entry on oeis.org

0, 2, 5, 9, 14, 18, 24, 32, 37, 45, 56, 65, 70, 80, 90, 102, 122, 130, 136, 146, 160, 171, 192, 205, 228, 256, 260, 268, 279, 292, 308, 324, 343, 372, 391, 411, 444, 480, 513, 518, 528, 537, 550, 569, 584, 605, 640, 649, 672, 705, 744, 773, 792, 823, 858, 904
Offset: 1

Views

Author

Vladimir Shevelev, Jan 06 2014

Keywords

Comments

Note that A001316(n) = Sum_{k=0..n} mod(C(n,k),2).
Therefore, the infinite series Sum_{n>=0} 1/A001316(n) is a special case of Sum_{n>=0} 1/Sum_{k=0..n} (mod(C(n,k),2)*x^k) for x=1 (cf. A001317, A100307, A100308, etc.). For x>1 this series is convergent, while for x=1 it is divergent. It would be interesting to have asymptotic estimates for a(n).

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{k=0, s=1}, While[s < n, k++; s += (1/Numerator[2^k / k!])] ; k]; Array[a, 60] (* Amiram Eldar, Dec 04 2018 *)
  • PARI
    f(n) = numerator(2^n / n!); \\ A001316
    a(n) = my(k=0, s=1/f(0)); while (s < n, k++; s += 1/f(k)); k; \\ Michel Marcus, Dec 04 2018

Extensions

More terms from Peter J. C. Moses, Jan 06 2014