cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A235353 Numbers m such that phi(m) and tau(m) divide m, where phi = A000010 and tau = A000005.

Original entry on oeis.org

1, 2, 8, 12, 18, 24, 36, 72, 96, 108, 128, 288, 384, 864, 972, 1152, 1944, 3456, 6144, 6912, 7776, 13122, 18432, 26244, 31104, 32768, 52488, 55296, 62208, 69984, 98304, 209952, 279936, 294912, 497664, 559872, 708588, 839808, 884736, 1679616, 3538944, 4478976
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 06 2014

Keywords

Comments

Intersection of A007694 and A033950.
From David Morales Marciel, May 01 2015: (Start)
m is always of the form (2^i)(3^j) where i>0, j>=0.
If j=0, then m is a deficient number, and sigma(m)=2m-1. The deficiency is always 1.
If j>0, then m is an abundant number. (End)

Crossrefs

Programs

  • Haskell
    a235353 n = a235353_list !! (n-1)
    a235353_list = filter (\x -> mod x (a000005 x) == 0) a007694_list
    
  • Mathematica
    Select[Range@ 1000000, And[Mod[#, EulerPhi@ #] == 0, Mod[#, DivisorSigma[0, #]] == 0] &] (* Michael De Vlieger, May 05 2015 *)
    Select[Range[55*10^5],Mod[#,EulerPhi[#]]==Mod[#,DivisorSigma[0,#]]==0&] (* Harvey P. Dale, Feb 22 2023 *)
  • PARI
    for(n=1,10^6,if(!(n%numdiv(n)+n%eulerphi(n)),print1(n,", "))) \\ Derek Orr, Apr 30 2015
    
  • PARI
    sm3(n)=if(n<1, 0, n>>=valuation(n,2); 3^valuation(n,3)==n)
    list(lim)=my(v=List([1]),t); for(i=1,log(lim)\log(2), if(!sm3(i+1), next); for(j=0,log(lim>>i)\log(3), t=2^i*3^j; if(t%((i+1)*(j+1))==0, listput(v,t)))); Set(v) \\ Charles R Greathouse IV, May 05 2015
    
  • Python
    from itertools import count, islice
    from math import prod
    from sympy import factorint
    def A235353_gen(startvalue=1): # generator of terms >= startvalue
        for k in count(max(startvalue,1)):
            f = factorint(k)
            t = prod(p**(e-1)*(p-1) for p, e in f.items())
            s = prod(e+1 for e in f.values())
            if not (k%s or k%t):
                yield k
    A235353_list = list(islice(A235353_gen(),20)) # Chai Wah Wu, Mar 14 2023