A171606
Numbers expressible as A*B^A in two or more different ways, with A, B > 1.
Original entry on oeis.org
648, 2048, 4608, 5184, 41472, 52488, 472392, 500000, 524288, 2654208, 3125000, 4718592, 10125000, 13436928, 21233664, 30233088, 46118408, 76236552, 134217728, 169869312, 344373768, 402653184, 512000000, 648000000, 737894528, 800000000, 838860800, 922640625
Offset: 1
648 = 3 * 6^3 = 2 * 18^2.
5184 = 4 * 6^4 = 3 * 12^3.
344373768 = 8 * 9^8 = 3 * 486^3 = 2 * 13122^2.
922640625 = 5 * 45^5 = 3 * 675^3.
A255535
Numbers representable as both b^c + b + c and x^y + x - y, where b, c, x, y are integers greater than 1.
Original entry on oeis.org
14, 88, 65548, 33554459, 387420510, 1099511627800, 35184372088855, 3656158440063002, 459986536544739960976836, 1237940039285380274899124273, 6362685441135942358474828762538534230890216378
Offset: 1
a(1) = 14 = 3^2 + 3 + 2 = 2^4 + 2 - 4.
a(2) = 88 = 3^4 + 3 + 4 = 9^2 + 9 - 2.
a(3) = 65548 = 4^8 + 4 + 8 = 16^4 + 16 - 4.
a(4) = 33554459 = 2^25 + 2 + 25 = 32^5 + 32 - 5.
a(5) = 387420510 = 3^18 + 3 + 18 = 27^6 + 27 - 6.
a(6) = 1099511627800 = 4^20 + 4 + 20 = 32^8 + 32 - 8.
a(7) = 35184372088855 = 8^15 + 8 + 15 = 32^9 + 32 - 9.
a(8) = 3656158440063002 = 6^20 + 6 + 20 = 36^10 + 36 - 10.
From _Michael S. Branicky_, May 15 2021: (Start)
The following are terms:
459986536544739960976836 = 7^28 + 7 + 28 = 49^14 + 49 - 14,
1237940039285380274899124273 = 4^45 + 4 + 45 = 64^15 + 64 - 15,
6362685...0216378 (46 digits) = 9^48 + 9 + 48 = 81^24 + 81 - 24, and
1000000...0000070 (61 digits) = 10^60 + 10 + 60 = 100^30 + 100 - 30. (End)
-
TOP = 100000000
a = [0]*TOP
for y in range(2,TOP//2):
if 2**y+2+y>=TOP: break
for x in range(2,TOP//2):
k = x**y+x+y
if k>=TOP: break
a[k]=1
for y in range(2,TOP//2):
if 2**y+2-y>=TOP: break
for x in range(2,TOP//2):
k = x**y+x-y
if k>=TOP: break
if k>=0: a[k]|=2
print([n for n in range(TOP) if a[n]==3])
A316745
Numbers expressible as A*B^A in three or more different ways, with A, B > 1.
Original entry on oeis.org
344373768, 30233088000000, 5777633090469888, 198077054103584768, 97261323672455430408, 5242880000000000000000, 32462531054272512000000, 96932598327560852471808, 20526276111602783203125000, 195845982777569926302400512, 1631774235698698006327984128
Offset: 1
30233088000000 is a term because it can be expressed as 2*3888000^2 = 3*21600^3 = 5*360^5.
-
abaC[n_] := Block[{c=0, k=2}, While[n >= k 2^k, If[Mod[n, k] == 0 && IntegerQ[ (n/k)^ (1/k)], c++]; k++]; c]; lim = 10^20; a=5; Union@ Reap[ While[a 2^a < lim, b=2; While[(v = a b^a) < lim, If[abaC[v] > 2, Sow[v]]; b++]; a++]][[2, 1]]
Showing 1-3 of 3 results.
Comments