A235459 Number of facets of the correlation polytope of degree n.
2, 4, 16, 56, 368, 116764, 217093472
Offset: 1
Examples
a(2) corresponds to 0 <= p[1,2] <= p[1,1],p[2,2] and p[1,1] + p[2,2] - p[1,2] <= 1.
References
- M. M. Deza and M. Laurent, Geometry of Cuts and Metrics, Springer, 1997, pp. 52-54.
- G. Kalai and G. Ziegler, ed. "Polytopes: Combinatorics and Computation", Springer, 2000, Chapter 1, pp 1-41.
Links
- T. Christof, The SMAPO database about the CUT polytope
- Michel Deza and Mathieu Dutour Sikirić, Enumeration of the facets of cut polytopes over some highly symmetric graphs, Intl. Trans. in Op. Res., 23 (2016), 853-860; arXiv:1501.05407 [math.CO], 2015. [Confirms the value of a(7).]
- Stefan Forcey, Encyclopedia of Combinatorial Polytope Sequences: Cut Polytope.
- G. Ziegler, Lectures on 0/1 Polytopes, arXiv:math/9909177 [math.CO], 1999, p 22-28.
Programs
-
Sage
def Correlation(n): if n == 0: yield (tuple([]),tuple([])) return for x,y in Correlation(n-1): yield (x + (0,),y + (n-1)*(0,)) yield (x + (1,),y + x) def CorrelationPolytope(n): return Polyhedron(vertices=[x + y for x,y in Correlation(n)]) def a(n): return len(CorrelationPolytope(n).Hrepresentation())
Comments