A235488 Squarefree numbers which yield zero when their prime factors are xored together.
70, 646, 1798, 2145, 3526, 5865, 6006, 9177, 11305, 13110, 16422, 20553, 20806, 21489, 23529, 28905, 28985, 30305, 31465, 37961, 38086, 38454, 42441, 44022, 44998, 45353, 45942, 46345, 53985, 54230, 55913, 60630, 60697, 61705, 62049, 64790, 78406, 80934, 81158
Offset: 1
Examples
70 is included, as 70 = 2*5*7, whose binary representations are '10', '101' and '111', which when all are xored (cf. A003987) together, cancel all 1-bits, thus yielding zero. 212585 is included, as 212585 = 5*17*41*61, and when we xor their base-2 representations together: 101 10001 101001 111101 -------- 000000 we get only zeros, because in each column (bit-position), there is an even number of 1-bits.
Links
- Antti Karttunen and Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 75 terms from Karttunen)
- Wikipedia, Nim
Crossrefs
Programs
-
Mathematica
Select[Range[82000],SquareFreeQ[#]&&BitXor@@FactorInteger[#][[All,1]]==0&] (* Harvey P. Dale, Apr 01 2017 *)
-
PARI
is(n)=if(n<9, return(0)); my(f=factor(n)); vecmax(f[,2])==1 && fold(bitxor, f[,1])==0 \\ Charles R Greathouse IV, Aug 06 2016
Comments