cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A235537 Expansion of (6 + 13*x - 8*x^2 - 8*x^3 + 6*x^4)/((1 + x)^2*(1 - x)^3).

Original entry on oeis.org

6, 19, 23, 41, 49, 72, 84, 112, 128, 161, 181, 219, 243, 286, 314, 362, 394, 447, 483, 541, 581, 644, 688, 756, 804, 877, 929, 1007, 1063, 1146, 1206, 1294, 1358, 1451, 1519, 1617, 1689, 1792, 1868, 1976, 2056, 2169, 2253, 2371, 2459, 2582, 2674, 2802, 2898
Offset: 0

Views

Author

Bruno Berselli, Jan 23 2014

Keywords

Crossrefs

Cf. A235332.

Programs

  • Magma
    [(6*n*(3*n+17)-(2*n+43)*(-1)^n+11)/16+8: n in [0..50]];
  • Mathematica
    Table[(6 n (3 n + 17) - (2 n + 43) (-1)^n + 11)/16 + 8, {n, 0, 50}]
    LinearRecurrence[{1,2,-2,-1,1},{6,19,23,41,49},80] (* Harvey P. Dale, Aug 22 2015 *)

Formula

G.f.: (6 + 13*x - 8*x^2 - 8*x^3 + 6*x^4)/((1 + x)^2*(1 - x)^3).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = (6*n*(3*n + 17) - (2*n + 43)*(-1)^n + 11)/16 + 8. The terms a(2k) are in A235332; the closed form of the terms a(2k+1) is n*(9*n+35)/2+19.