A235540 Composite numbers m such that (4^m - 2^m + 8*m^2 - 2) / (2*m*(2*m + 1)) is an integer.
243, 891, 1539, 2211, 2511, 13203, 19683, 87723, 92583, 150851, 202851, 292923, 321651, 399771, 412623, 452051, 1325843, 1330551, 1441091, 1566891, 3026871, 4422231, 4954851, 4974971, 5016191, 5845851, 5971239, 6773139, 11050911, 11720511, 12602871, 14666751
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..89
Programs
-
Haskell
a235540 n = a235540_list !! (n-1) a235540_list = filter ((== 0) . a010051') a158034_list
-
Mathematica
Select[Range[10^6],CompositeQ[#]&&IntegerQ[(4^#-2^#+8#^2-2)/(2#(2#+1))]&] (* Harvey P. Dale, Nov 17 2014 *)
-
Python
from gmpy2 import is_prime, powmod, t_mod A235540_list = [] for i in range(1,10**9+1): if not is_prime(i): d = 2*i*(2*i+1) n = t_mod(powmod(4,i,d)-powmod(2,i,d)+8*i*i-2,d) if not n: A235540_list.append(i) # Chai Wah Wu, Dec 02 2014
Extensions
New definition from Reinhard Zumkeller, Nov 17 2014. Thanks to Harvey P. Dale, who observed that the original definition was wrong.
More terms from Harvey P. Dale, Nov 17 2014
More terms from Chai Wah Wu, Dec 02 2014
Comments