A235622 Primes whose base-8 representation also is the base-7 representation of a prime.
2, 3, 5, 19, 53, 89, 109, 131, 257, 293, 307, 347, 349, 433, 523, 557, 683, 739, 811, 853, 881, 907, 937, 941, 1061, 1097, 1117, 1201, 1427, 1621, 1693, 1733, 1747, 1861, 1873, 1889, 1907, 2141, 2267, 2341, 2467, 2677, 2699, 2803, 2861, 2917, 2953, 3163, 3253, 3307, 3433
Offset: 1
Examples
E.g., 19 = 23_8 and 23_7 = 17 are both prime.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- M. F. Hasler, Primes whose base c expansion is also the base b expansion of a prime
Crossrefs
Programs
-
Mathematica
pb87Q[n_]:=Module[{idn8=IntegerDigits[n,8]},Max[idn8]<7&&PrimeQ[ FromDigits[ idn8,7]]]; Select[Prime[Range[500]],pb87Q] (* Harvey P. Dale, Dec 13 2016 *)
-
PARI
is(p,b=7,c=8)=vecmax(d=digits(p,c))
-
PARI
forprime(p=1,3e3,is(p,8,7)&&print1(vector(#d=digits(p,7),i,8^(#d-i))*d~,",")) \\ To produce the terms, this is more efficient than to select them using straightforwardly is(.)=is(.,7,8)
Comments