A235725 Values k(i) such that k(i) + k(i+3) = k(i+1) + k(i+2), where k(i) is A022885(i).
5, 353, 541, 853, 2341, 4217, 4229, 8219, 10663, 11047, 13591, 18593, 21577, 28387, 30181, 34457, 37853, 52021, 55333, 57203, 75389, 84431, 93229, 110603, 120811, 147451, 153499, 162907, 166357, 176797, 179581, 219953, 243671, 246203, 307253, 342037, 359701
Offset: 1
Keywords
Examples
Four consecutive Kimberling primes(A022885), beginning with 5 are 5,7,11,13. Since 5+13 = 7+11, then 5 is in the sequence; four consecutive Kimberling primes, beginning with 7 are 7,11,13,23. Since 7+23 is not equal to 11+13, then 7 is not in the sequence.
Links
- Peter J. C. Moses, Table of n, a(n) for n = 1..5000
Crossrefs
Cf. A022885.
Programs
-
Mathematica
Nest[Map[#[[1]]&,Select[Partition[#,4,1],#[[1]]+#[[4]]==#[[2]]+#[[3]]&]]&,Prime[Range[5000]],2]
-
PARI
isA022885(p) = {my(k = primepi(p)); (p == prime(k)) && ((prime(k) + prime(k+3)) == (prime(k+1) + prime(k+2)));} lista(nn) = {prm = primes(nn); vkp = select(p->isA022885(p), prm); for(n=1, #vkp-3, if ((vkp[n] + vkp[n+3]) == (vkp[n+1] + vkp[n+2]), print1(vkp[n], ", ")););} \\ Michel Marcus, Jan 15 2014
Extensions
a(5)-a(37) from Giovanni Resta, Jan 15 2014