A235773 Number of compositions of n into distinct powers of 3 and doubled powers of 3.
1, 1, 1, 3, 2, 2, 7, 2, 2, 9, 8, 8, 32, 6, 6, 26, 6, 6, 31, 26, 26, 128, 6, 6, 26, 6, 6, 33, 32, 32, 158, 30, 30, 152, 30, 30, 176, 150, 150, 870, 24, 24, 126, 24, 24, 146, 126, 126, 750, 24, 24, 126, 24, 24, 151, 146, 146, 872, 126, 126, 770, 126, 126, 872
Offset: 0
Examples
Let n=5. We have only two allowed compositions 2+3 = 3+2. So a(5) = 2. For n=6, we have compositions 6 = 1+2+3 = 1+3+2 = 2+3+1 = 2+1+3 = 3+2+1 = 3+1+2. Thus a(6) = 7.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<0, 0, expand(b(n, i-1)+`if`(3*3^i>n, 0, b(n-3*3^i, i-1)*x^2) +add(`if`(j*3^i>n, 0, b(n-j*3^i, i-1))*x, j=1..2)))) end: a:= n->(p->add(coeff(p, x, j)*j!, j=0..degree(p)))(b(n, ilog[3](n))): seq(a(n), n=0..100); # Alois P. Heinz, Jan 15 2014
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<0, 0, Expand[b[n, i-1] + If[3^(i+1) > n, 0, b[n-3^(i+1), i-1]x^2] + Sum[If[3^i j > n, 0, b[n-3^i j, i-1]]x, {j, 1, 2}]]]]; a[n_] := With[{p = b[n, Log[3, n] // Floor]}, Sum[Coefficient[p, x, j] j!, {j, 0, Exponent[p, x]}]]; a /@ Range[0, 100] (* Jean-François Alcover, Nov 12 2020, after Alois P. Heinz *)