A235790 Triangle read by rows: T(n,k) = 2^k*A116608(n,k), n>=1, k>=1.
2, 4, 4, 4, 6, 8, 4, 20, 8, 24, 8, 4, 44, 16, 8, 52, 40, 6, 68, 80, 8, 88, 120, 16, 4, 108, 200, 32, 12, 116, 296, 80, 4, 148, 416, 160, 8, 176, 536, 320, 8, 176, 776, 480, 32, 10, 220, 936, 832, 64, 4, 236, 1232, 1232, 160, 12, 272, 1472, 1872, 320
Offset: 1
Examples
Triangle begins: 2; 4; 4, 4; 6, 8; 4, 20; 8, 24, 8; 4, 44, 16; 8, 52, 40; 6, 68, 80; 8, 88, 120, 16; 4, 108, 200, 32; 12, 116, 296, 80; 4, 148, 416, 160; 8, 176, 536, 320; 8, 176, 776, 480, 32; 10, 220, 936, 832, 64; 4, 236, 1232, 1232, 160; 12, 272, 1472, 1872, 320; 4, 284, 1880, 2592, 640; 12, 324, 2216, 3632, 1152; 8, 328, 2704, 4944, 1856, 64; ...
Links
- Alois P. Heinz, Rows n = 1..500, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, expand(b(n, i-1)+add(x*b(n-i*j, i-1), j=1..n/i)))) end: T:= n->(p->seq(2^i*coeff(p, x, i), i=1..degree(p)))(b(n$2)): seq(T(n), n=1..20); # Alois P. Heinz, Jan 20 2014
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Expand[b[n, i-1] + Sum[x*b[n-i*j, i-1], {j, 1, n/i}]]]]; T[n_] := Function[p, Table[2^i * Coefficient[p, x, i], {i, 1, Exponent[p, x]}]][b[n, n]]; Table[T[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Oct 20 2016, after Alois P. Heinz *)
Comments