cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A015128 Number of overpartitions of n: an overpartition of n is an ordered sequence of nonincreasing integers that sum to n, where the first occurrence of each integer may be overlined.

Original entry on oeis.org

1, 2, 4, 8, 14, 24, 40, 64, 100, 154, 232, 344, 504, 728, 1040, 1472, 2062, 2864, 3948, 5400, 7336, 9904, 13288, 17728, 23528, 31066, 40824, 53408, 69568, 90248, 116624, 150144, 192612, 246256, 313808, 398640, 504886, 637592, 802936, 1008448
Offset: 0

Views

Author

Keywords

Comments

The over-partition function.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Also the number of jagged partitions of n.
According to Ramanujan (1913) a(n) is close to (cosh(x)-sinh(x)/x)/(4*n) where x=Pi*sqrt(n). - Michael Somos, Mar 17 2003
Number of partitions of 2n with all odd parts occurring with even multiplicities. There is no restriction on the even parts. Cf. A006950, A046682. - Mamuka Jibladze, Sep 05 2003
Number of partitions of n where there are two kinds of odd parts. - Joerg Arndt, Jul 30 2011. Or, in Gosper's words, partitions into red integers and blue odd integers. - N. J. A. Sloane, Jul 04 2016.
Coincides with the sequence of numbers of nilpotent conjugacy classes in the Lie algebras sp(n), n=0,1,2,3,... (the case n=0 being degenerate). A006950, this sequence and A000041 together cover the nilpotent conjugacy classes in the classical A,B,C,D series of Lie algebras. - Alexander Elashvili, Sep 08 2003
Also, number of 01-partitions of n. A 01-partition of n is a weakly decreasing sequence of m nonnegative integers n(i) such that sum(n(i))=n, n(m)>0, n(j)>=n(j+1)-1 and n(j)>=n(j+2). They are special cases of jagged partitions.
a(8n+7) is divisible by 64 (from Fortin/Jacob/Mathieu paper).
Smallest sequence of even numbers (except a(0)) which is the Euler transform of a sequence of positive integers. - Franklin T. Adams-Watters, Oct 16 2006
Convolution of A000041 and A000009. - Vladeta Jovovic, Nov 26 2002
Equals A022567 convolved with A035363. - Gary W. Adamson, Jun 09 2009
Equals the infinite product [1,2,2,2,...] * [1,0,2,0,2,0,2,...] * [1,0,0,2,0,0,2,0,0,2,...] * ... . - Gary W. Adamson, Jul 05 2009
Equals A182818 convolved with A010815. - Gary W. Adamson, Jul 20 2012
Partial sums of A211971. - Omar E. Pol, Jan 09 2014
Also 1 together with the row sums of A235790. - Omar E. Pol, Jan 19 2014
Antidiagonal sums of A284592. - Peter Bala, Mar 30 2017
The overlining method is equivalent to enumerating the k-subsets of the distinct parts of the i-th partition. - Richard Joseph Boland, Sep 02 2021

Examples

			G.f. = 1 + 2*q + 4*q^2 + 8*q^3 + 14*q^4 + 24*q^5 + 40*q^6 + 64*q^7 + 100*q^8 + ...
For n = 4 the 14 overpartitions of 4 are [4], [4'], [2, 2], [2', 2], [3, 1], [3', 1], [3, 1'], [3', 1'], [2, 1, 1], [2', 1, 1], [2, 1', 1], [2', 1', 1], [1, 1, 1, 1], [1', 1, 1, 1]. - _Omar E. Pol_, Jan 19 2014
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 103.
  • R. W. Gosper, Experiments and discoveries in q-trigonometry, in Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics. Editors: F. G. Garvan and M. E. H. Ismail. Kluwer, Dordrecht, Netherlands, 2001, pp. 79-105. See the function g(q).
  • James R. Newman, The World of Mathematics, Simon and Schuster, 1956, Vol. I p. 372.

Crossrefs

See A004402 for a version with signs.
Column k=2 of A321884.
Cf. A002513.

Programs

  • Julia
    # JacobiTheta4 is defined in A002448.
    A015128List(len) = JacobiTheta4(len, -1)
    A015128List(40) |> println # Peter Luschny, Mar 12 2018
    
  • Maple
    mul((1+x^n)/(1-x^n),n=1..256): seq(coeff(series(%,x,n+1),x,n), n=0..40);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1) +2*add(b(n-i*j, i-1), j=1..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..40);  # Alois P. Heinz, Feb 10 2014
    a_list := proc(len) series(1/JacobiTheta4(0,x),x,len+1); seq(coeff(%,x,j),j=0..len) end: a_list(39); # Peter Luschny, Mar 14 2017
  • Mathematica
    max = 39; f[x_] := Exp[Sum[(DivisorSigma[1, 2*n] - DivisorSigma[1, n])*(x^n/n), {n, 1, max}]]; CoefficientList[ Series[f[x], {x, 0, max}], x] (* Jean-François Alcover, Jun 11 2012, after Joerg Arndt *)
    a[ n_] := SeriesCoefficient[ QHypergeometricPFQ[ {-1}, {}, x, x], {x, 0, n}]; (* Michael Somos, Mar 11 2014 *)
    QP = QPochhammer; s = QP[q^2]/QP[q]^2 + O[q]^40; CoefficientList[s + O[q]^100, q] (* Jean-François Alcover, Nov 25 2015, after Michael Somos *)
    Table[Sum[PartitionsP[n-k]*PartitionsQ[k], {k, 0, n}], {n, 0, 50}] (* Vaclav Kotesovec, Nov 28 2015 *)
    (QPochhammer[-x, x]/QPochhammer[x, x] + O[x]^50)[[3]] (* Vladimir Reshetnikov, Nov 12 2016 *)
    nmax = 100; p = ConstantArray[0, nmax+1]; p[[1]] = 1; Do[p[[n+1]] = 0; k = 1; While[n + 1 - k^2 > 0, p[[n+1]] += (-1)^(k+1)*p[[n + 1 - k^2]]; k++;]; p[[n+1]] = 2*p[[n+1]];, {n, 1, nmax}]; p (* Vaclav Kotesovec, Apr 11 2017 *)
    a[ n_] := SeriesCoefficient[ 1 / EllipticTheta[ 4, 0, x], {x, 0, n}]; (* Michael Somos, Nov 15 2018 *)
    a[n_] := Sum[2^Length[Union[IntegerPartitions[n][[i]]]], {i, 1, PartitionsP[n]}]; (* Richard Joseph Boland, Sep 02 2021 *)
    n = 39; CoefficientList[Product[(1 + x^k)/(1 - x^k), {k, 1, n}] + O[x]^(n + 1), x] (* Oliver Seipel, Sep 19 2021 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) / eta(x + A)^2, n))}; /* Michael Somos, Nov 01 2008 */
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n\2+1,2*x^(2*m-1)/(1-x^(2*m-1)+x*O(x^n))/(2*m-1))),n)} /* Paul D. Hanna, Aug 06 2009 */
    
  • PARI
    N=66; x='x+O('x^N); gf=exp(sum(n=1,N,(sigma(2*n)-sigma(n))*x^n/n));Vec(gf) /* Joerg Arndt, Jul 30 2011 */
    
  • PARI
    lista(nn) = {q='q+O('q^nn); Vec(eta(q^2)/eta(q)^2)} \\ Altug Alkan, Mar 20 2018
    
  • SageMath
    # uses[EulerTransform from A166861]
    a = BinaryRecurrenceSequence(0, 1, 1, 2)
    b = EulerTransform(a)
    print([b(n) for n in range(40)]) # Peter Luschny, Nov 11 2020

Formula

Euler transform of period 2 sequence [2, 1, ...]. - Michael Somos, Mar 17 2003
G.f.: Product_{m>=1} (1 + q^m)/(1 - q^m).
G.f.: 1 / (Sum_{m=-inf..inf} (-q)^(m^2)) = 1/theta_4(q).
G.f.: 1 / Product_{m>=1} (1 - q^(2*m)) * (1 - q^(2*m-1))^2.
G.f.: exp( Sum_{n>=1} 2*x^(2*n-1)/(1 - x^(2*n-1))/(2*n-1) ). - Paul D. Hanna, Aug 06 2009
G.f.: exp( Sum_{n>=1} (sigma(2*n) - sigma(n))*x^n/n ). - Joerg Arndt, Jul 30 2011
G.f.: Product_{n>=0} theta_3(q^(2^n))^(2^n). - Joerg Arndt, Aug 03 2011
A004402(n) = (-1)^n * a(n). - Michael Somos, Mar 17 2003
Expansion of eta(q^2) / eta(q)^2 in powers of q. - Michael Somos, Nov 01 2008
Expansion of 1 / phi(-q) in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Nov 01 2008
Convolution inverse of A002448. - Michael Somos, Nov 01 2008
Recurrence: a(n) = 2*Sum_{m>=1} (-1)^(m+1) * a(n-m^2).
a(n) = (1/n)*Sum_{k=1..n} (sigma(2*k) - sigma(k))*a(n-k). - Vladeta Jovovic, Dec 05 2004
G.f.: Product_{i>=1} (1 + x^i)^A001511(2i) (see A000041). - Jon Perry, Jun 06 2004
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = w^4 * (u^4 + v^4) - 2 * u^2 * v^6. - Michael Somos, Nov 01 2008
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u6^3 * (u1^2 + u3^2) - 2 * u1 * u2 * u3^3. - Michael Somos, Nov 01 2008
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u2^3 * (u3^2 - 3 * u1^2) + 2 * u1^3 * u3 * u6. - Michael Somos, Nov 01 2008
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 32^(-1/2) (t/i)^(-1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A106507. - Michael Somos, Nov 01 2008
a(n) = 2*A014968(n), n >= 1. - Omar E. Pol, Jan 19 2014
a(n) ~ Pi * BesselI(3/2, Pi*sqrt(n)) / (4*sqrt(2)*n^(3/4)). - Vaclav Kotesovec, Jan 11 2017
Let T(n,k) = the number of partitions of n with parts 1 through k of two kinds, T(n,0) = A000041(n), the number of partitions of n. Then a(n) = T(n,0) + T(n-1,1) + T(n-3,2) + T(n-6,3) + T(n-10,4) + T(n-15,5) + ... . Gregory L. Simay, May 29 2019
For n >= 1, a(n) = Sum_{k>=1} 2^k * A116608(n,k). - Gregory L. Simay, Jun 01 2019
Sum_{n>=1} 1/a(n) = A303662. - Amiram Eldar, Nov 15 2020
a(n) = Sum_{i=1..p(n)} 2^(d(n,i)), where d(n,i) is the number of distinct parts in the i-th partition of n. - Richard Joseph Boland, Sep 02 2021
G.f.: A(x) = exp( Sum_{n >= 1} x^n*(2 + x^n)/(n*(1 - x^(2*n))) ). - Peter Bala, Dec 23 2021
G.f. A(q) satisfies (3*A(q)/A(q^9) - 1)^3 = 9*A(q)^4/A(q^3)^4 - 1. - Paul D. Hanna, Oct 14 2024

Extensions

Minor edits by Vaclav Kotesovec, Sep 13 2014

A235792 Total number of parts in all overpartitions of n.

Original entry on oeis.org

2, 6, 16, 34, 68, 128, 228, 390, 650, 1052, 1664, 2584, 3940, 5916, 8768, 12826, 18552, 26566, 37672, 52956, 73848, 102192, 140420, 191688, 260038, 350700, 470384, 627604, 833236, 1101080, 1448500, 1897438, 2475464, 3217016, 4165200, 5373714, 6909180, 8854288
Offset: 1

Views

Author

Omar E. Pol, Jan 18 2014

Keywords

Comments

It appears that a(n) is also the sum of largest parts of all overpartitions of n.
More generally, It appears that the total number of parts >= k in all overpartitions of n equals the sum of k-th largest parts of all overpartitions of n. In this case k = 1. Also the first column of A235797.
The equivalent sequence for partitions is A006128.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0],
          `if`(i<1, [0$2], b(n, i-1)+add((l-> l+[0, l[1]*j])
           (2*b(n-i*j, i-1)), j=1..n/i)))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=1..40);  # Alois P. Heinz, Jan 21 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i<1, {0, 0}, b[n, i-1] + Sum[ Function[l, l+{0, l[[1]]*j}][2*b[n-i*j, i-1]], {j, 1, n/i}]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)

Formula

log(a(n)) ~ Pi*sqrt(n). - Vaclav Kotesovec, Apr 13 2025

Extensions

More terms from Alois P. Heinz, Jan 21 2014

A235998 Triangle read by rows: T(n,k) is the number of compositions of n having k distinct parts (n>=1, 1<=k<=floor((sqrt(1+8*n)-1)/2)).

Original entry on oeis.org

1, 2, 2, 2, 3, 5, 2, 14, 4, 22, 6, 2, 44, 18, 4, 68, 56, 3, 107, 146, 4, 172, 312, 24, 2, 261, 677, 84, 6, 396, 1358, 288, 2, 606, 2666, 822, 4, 950, 5012, 2226, 4, 1414, 9542, 5304, 120, 5, 2238, 17531, 12514, 480, 2, 3418, 32412, 27904, 1800, 6, 5411, 58995, 61080, 5580
Offset: 1

Views

Author

Omar E. Pol, Jan 19 2014

Keywords

Comments

Row n has length A003056(n) hence the first element of column k is in row A000217(k).
The equivalent sequence for partitions is A116608.
For the number of compositions of n see A011782.
For the connection to overcompositions see A235999.
Row sums give A011782(n), n >= 1.
First column is A000005, second column is A131661.
T(k*(k+1)/2,k) = T(A000217(k),k) = A000142(k) = k!. - Alois P. Heinz, Jan 20 2014

Examples

			Triangle begins:
  1;
  2;
  2,    2;
  3,    5;
  2,   14;
  4,   22,     6;
  2,   44,    18;
  4,   68,    56;
  3,  107,   146;
  4,  172,   312,    24;
  2,  261,   677,    84;
  6,  396,  1358,   288;
  2,  606,  2666,   822;
  4,  950,  5012,  2226;
  4, 1414,  9542,  5304,  120;
  5, 2238, 17531, 12514,  480;
  2, 3418, 32412, 27904, 1800;
  6, 5411, 58995, 61080, 5580;
  ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0,
          expand(add(b(n-i*j, i-1, p+j)/j!*`if`(j=0, 1, x), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n$2, 0)):
    seq(T(n), n=1..25); # Alois P. Heinz, Jan 20 2014, revised May 25 2014
  • Mathematica
    b[n_, i_, p_] := b[n, i, p] = If[n==0, p!, If[i<1, 0, Sum[b[n-i*j, i-1, p+ j]/j!*If[j==0, 1, x], {j, 0, n/i}]]]; T[n_] := Function[p, Table[ Coefficient[p, x, i], {i, 1, Exponent[p, x]}]][b[n, n, 0]]; Table[T[n], {n, 1, 25}] // Flatten (* Jean-François Alcover, Dec 10 2015, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Jan 19 2014

A235793 Sum of all parts of all overpartitions of n.

Original entry on oeis.org

2, 8, 24, 56, 120, 240, 448, 800, 1386, 2320, 3784, 6048, 9464, 14560, 22080, 32992, 48688, 71064, 102600, 146720, 207984, 292336, 407744, 564672, 776650, 1061424, 1442016, 1947904, 2617192, 3498720, 4654464, 6163584, 8126448, 10669472, 13952400, 18175896
Offset: 1

Views

Author

Omar E. Pol, Jan 18 2014

Keywords

Comments

The equivalent sequence for partitions is A066186.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0],
          `if`(i<1, [0$2], b(n, i-1)+add((l-> l+[0, l[1]*i*j])
           (2*b(n-i*j, i-1)), j=1..n/i)))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=1..40);  # Alois P. Heinz, Jan 21 2014
  • Mathematica
    Table[n*Sum[PartitionsP[n-k]*PartitionsQ[k], {k, 0, n}], {n, 1, 40}] (* Jean-François Alcover, Oct 20 2016, after Vaclav Kotesovec *)

Formula

a(n) = n*A015128(n).
a(n) ~ exp(Pi*sqrt(n)) / 8. - Vaclav Kotesovec, May 19 2018

A235798 Triangle read by rows: T(n,k) = number of occurrences of k in all overpartitions of n.

Original entry on oeis.org

2, 4, 2, 10, 4, 2, 20, 8, 4, 2, 38, 16, 8, 4, 2, 68, 30, 16, 8, 4, 2, 118, 52, 28, 16, 8, 4, 2, 196, 88, 48, 28, 16, 8, 4, 2, 318, 144, 82, 48, 28, 16, 8, 4, 2, 504, 230, 132, 80, 48, 28, 16, 8, 4, 2, 782, 360, 208, 128, 80, 48, 28, 16, 8, 4, 2, 1192, 552, 324, 202, 128, 80, 48, 28, 16, 8, 4, 2
Offset: 1

Views

Author

Omar E. Pol, Jan 18 2014

Keywords

Comments

It appears that row n lists the first differences of row n of triangle A235797 together with 2 (as the final term of the row).
The equivalent sequence for partitions is A066633.

Examples

			Triangle begins:
2;
4,   2;
10,  4,  2;
20,  8,  4,  2;
38, 16,  8,  4,  2;
68, 30, 16,  8,  4,  2;
...
		

Crossrefs

Programs

  • PARI
    A(n)={my(p=prod(k=1, n, (1 + x^k)/(1 - x^k) + O(x*x^n))); Mat(vector(n, k, Col(2*(p + O(x*x^(n-k)))*x^k/((1 - x^k)*(1 + x^k)), -n)))}
    { my(T=A(10)); for(n=1, #T, print(T[n, 1..n])) } \\ Andrew Howroyd, Feb 19 2020

Formula

G.f. of column k: 2*(x^k/((1 - x^k)*(1 + x^k))) * Product_{j>0} (1 + x^j)/(1 - x^j). - Andrew Howroyd, Feb 19 2020

Extensions

Terms a(22) and beyond from Andrew Howroyd, Feb 19 2020

A236000 Triangle read by rows in which row n lists the overpartitions of n in colexicographic order.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 3, 1, 3, 1, 3, 1, 2, 2, 2, 2, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Jan 18 2014

Keywords

Comments

In the data section the overlined parts cannot be represented correctly, therefore the sequence represents all possible suborderings generated by the overlined parts.
The diagram in the second part of the Example section shows only one of the possible suborderings.
The equivalent sequence for partitions is A211992.
The equivalent sequence for compositions is A228525.
See both sequences for more information.
Row n contains A015128(n) overpartitions.
Row n contains A235792(n) parts.
Row sums give A235793.

Examples

			Triangle begins:
[1], [1];
[1, 1], [1, 1], [2], [2];
[1, 1, 1], [1, 1, 1], [2, 1], [2, 1], [2, 1], [2, 1], [3], [3];
[1, 1, 1, 1], [1, 1, 1, 1], [2, 1, 1], [2, 1, 1], [2, 1, 1], [2, 1, 1], [3, 1], [3, 1], [3, 1], [3, 1], [2, 2], [2, 2], [4], [4];
...
Illustration of initial terms (n: 1..4)
-----------------------------------------
n      Diagram          Overpartition
-----------------------------------------
.       _
1      |.|              1',
1      |_|              1;
.       _ _
2      |.| |            1', 1,
2      |_| |            1,  1,
2      |  .|            2',
2      |_ _|            2;
.       _ _ _
3      |.| | |          1', 1,  1,
3      |_| | |          1,  1,  1,
3      |  .|.|          2', 1',
3      |   |.|          2,  1',
3      |  .| |          2', 1,
3      |_ _| |          2,  1,
3      |    .|          3',
3      |_ _ _|          3;
.       _ _ _ _
4      |.| | | |        1', 1,  1,  1,
4      |_| | | |        1,  1,  1,  1,
4      |  .|.| |        2', 1', 1,
4      |   |.| |        2,  1', 1,
4      |  .| | |        2', 1,  1,
4      |_ _| | |        2,  1,  1,
4      |    .|.|        3', 1',
4      |     |.|        3,  1',
4      |    .| |        3', 1,
4      |_ _ _| |        3,  1,
4      |  .|   |        2', 2,
4      |_ _|   |        2,  2,
4      |      .|        4',
4      |_ _ _ _|        4;
.
		

Crossrefs

A236001 Sum of positive ranks of all overpartitions of n.

Original entry on oeis.org

0, 2, 4, 10, 20, 36, 64, 110, 180, 288, 452, 696, 1052, 1568, 2304, 3346, 4808, 6838, 9636, 13464, 18664, 25684, 35104, 47672, 64348, 86368, 115304, 153152, 202452, 266404, 349032, 455406, 591856, 766284, 988544, 1270862, 1628380, 2079828, 2648296, 3362180
Offset: 1

Views

Author

Omar E. Pol, Jan 18 2014

Keywords

Comments

Consider here that the rank of a overpartition is the largest part minus the number of parts (the same idea as the Dyson's rank of a partition).
It appears that the sum of all ranks of all overpartitions of n is equal to zero.
The equivalent sequence for partitions is A209616.

Examples

			For n = 4 we have:
---------------------------
Overpartitions
of 4               Rank
---------------------------
4               4 - 1 =  3
4               4 - 1 =  3
2+2             2 - 2 =  0
2+2             2 - 2 =  0
3+1             3 - 2 =  1
3+1             3 - 2 =  1
3+1             3 - 2 =  1
3+1             3 - 2 =  1
2+1+1           2 - 3 = -1
2+1+1           2 - 3 = -1
2+1+1           2 - 3 = -1
2+1+1           2 - 3 = -1
1+1+1+1         1 - 4 = -3
1+1+1+1         1 - 4 = -3
---------------------------
The sum of positive ranks of all overpartitions of 4 is 3+3+1+1+1+1 = 10 so a(4) = 10.
		

Crossrefs

Programs

  • PARI
    a(n)={my(s=0); forpart(p=n, my(r=p[#p]-#p); if(r>0, s+=r*2^#Set(p))); s} \\ Andrew Howroyd, Feb 19 2020

Extensions

Terms a(7) and beyond from Andrew Howroyd, Feb 19 2020

A235797 Triangle read by rows in which T(n,k) is the sum of the k-th largest elements in all overpartitions of n.

Original entry on oeis.org

2, 6, 2, 16, 6, 2, 34, 14, 6, 2, 68, 30, 14, 6, 2, 128, 60, 30, 14, 6, 2
Offset: 1

Views

Author

Omar E. Pol, Jan 18 2014

Keywords

Comments

It appears that T(n,k) is also the total number of parts >= k in all overpartitions of n.
It appears that the first differences of row n together with 2 give row n of triangle A235798.
The equivalent sequence for partitions is A181187.

Examples

			Triangle begins:
    2;
    6,  2;
   16,  6,  2;
   34, 14,  6,  2;
   68, 30, 14,  6,  2;
  128, 60, 30, 14,  6,  2;
  ...
		

Crossrefs

A235999 Triangle read by rows: T(n,k) = 2^k*A235998(n,k), n>=1, k>=1.

Original entry on oeis.org

2, 4, 4, 8, 6, 20, 4, 56, 8, 88, 48, 4, 176, 144, 8, 272, 448, 6, 428, 1168, 8, 688, 2496, 384, 4, 1044, 5416, 1344, 12, 1584, 10864, 4608, 4, 2424, 21328, 13152, 8, 3800, 40096, 35616, 8, 5656, 76336, 84864, 3840, 10, 8952, 140248, 200224, 15360
Offset: 1

Views

Author

Omar E. Pol, Jan 19 2014

Keywords

Comments

T(n,k) is also the number of overcompositions of n having k distinct parts. For the definition of overcomposition see A236002.
Row n has length A003056(n) hence the first element of column k is in row A000217(k).
Row sums give A236002, n >= 1.
Column 1 is A062011.
T(k*(k+1)/2,k) = T(A000217(k),k) = A000165(k) = (2*k)!!. - Alois P. Heinz, Jan 20 2014

Examples

			Triangle begins:
2;
4;
4,     8;
6,    20;
4,    56;
8,    88,     48;
4,   176,    144;
8,   272,    448;
6,   428,   1168;
8,   688,   2496,    384;
4,  1044,   5416,   1344;
12, 1584,  10864,   4608;
4,  2424,  21328,  13152;
8,  3800,  40096,  35616;
8,  5656,  76336,  84864,  3840;
10, 8952, 140248, 200224, 15360;
...
		

Crossrefs

Extensions

More terms from Alois P. Heinz, Jan 20 2014

A335651 a(n) is the sum, over all overpartitions of n, of the non-overlined parts.

Original entry on oeis.org

1, 5, 14, 35, 74, 150, 280, 505, 875, 1470, 2402, 3850, 6034, 9300, 14120, 21131, 31220, 45619, 65930, 94374, 133892, 188350, 262904, 364350, 501459, 685762, 932200, 1259944, 1693750, 2265380, 3015152, 3994585, 5268988, 6920700, 9053748, 11798873, 15319610, 19820738, 25557560
Offset: 1

Views

Author

Jeremy Lovejoy, Jun 17 2020

Keywords

Examples

			The 8 overpartitions of 3 are [3], [3'], [2,1], [2,1'], [2',1], [2',1'], [1,1,1], [1',1,1], and so a(3) = 14.
		

Crossrefs

Cf. A305102 (number of non-overlined parts).

Programs

  • PARI
    my(N=44, q='q+O('q^N)); Vec( prod(k=1,N, (1+q^k)/(1-q^k)) * sum(k=1,N, k*q^k/(1-q^k)) ) \\ Joerg Arndt, Jun 18 2020

Formula

G.f.: (Product_{k>=1} (1+q^k)/(1-q^k)) * Sum_{n>=1} n*q^n/(1-q^n).
a(n) = A235793(n) - A335666(n). - Omar E. Pol, Jun 17 2020
Showing 1-10 of 12 results. Next