A235790
Triangle read by rows: T(n,k) = 2^k*A116608(n,k), n>=1, k>=1.
Original entry on oeis.org
2, 4, 4, 4, 6, 8, 4, 20, 8, 24, 8, 4, 44, 16, 8, 52, 40, 6, 68, 80, 8, 88, 120, 16, 4, 108, 200, 32, 12, 116, 296, 80, 4, 148, 416, 160, 8, 176, 536, 320, 8, 176, 776, 480, 32, 10, 220, 936, 832, 64, 4, 236, 1232, 1232, 160, 12, 272, 1472, 1872, 320
Offset: 1
Triangle begins:
2;
4;
4, 4;
6, 8;
4, 20;
8, 24, 8;
4, 44, 16;
8, 52, 40;
6, 68, 80;
8, 88, 120, 16;
4, 108, 200, 32;
12, 116, 296, 80;
4, 148, 416, 160;
8, 176, 536, 320;
8, 176, 776, 480, 32;
10, 220, 936, 832, 64;
4, 236, 1232, 1232, 160;
12, 272, 1472, 1872, 320;
4, 284, 1880, 2592, 640;
12, 324, 2216, 3632, 1152;
8, 328, 2704, 4944, 1856, 64;
...
Cf.
A000217,
A003056,
A116608,
A196020,
A211971,
A235792,
A235793,
A235797,
A235798,
A235999,
A236000,
A236001.
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
expand(b(n, i-1)+add(x*b(n-i*j, i-1), j=1..n/i))))
end:
T:= n->(p->seq(2^i*coeff(p, x, i), i=1..degree(p)))(b(n$2)):
seq(T(n), n=1..20); # Alois P. Heinz, Jan 20 2014
-
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Expand[b[n, i-1] + Sum[x*b[n-i*j, i-1], {j, 1, n/i}]]]]; T[n_] := Function[p, Table[2^i * Coefficient[p, x, i], {i, 1, Exponent[p, x]}]][b[n, n]]; Table[T[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Oct 20 2016, after Alois P. Heinz *)
A235793
Sum of all parts of all overpartitions of n.
Original entry on oeis.org
2, 8, 24, 56, 120, 240, 448, 800, 1386, 2320, 3784, 6048, 9464, 14560, 22080, 32992, 48688, 71064, 102600, 146720, 207984, 292336, 407744, 564672, 776650, 1061424, 1442016, 1947904, 2617192, 3498720, 4654464, 6163584, 8126448, 10669472, 13952400, 18175896
Offset: 1
-
b:= proc(n, i) option remember; `if`(n=0, [1, 0],
`if`(i<1, [0$2], b(n, i-1)+add((l-> l+[0, l[1]*i*j])
(2*b(n-i*j, i-1)), j=1..n/i)))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=1..40); # Alois P. Heinz, Jan 21 2014
-
Table[n*Sum[PartitionsP[n-k]*PartitionsQ[k], {k, 0, n}], {n, 1, 40}] (* Jean-François Alcover, Oct 20 2016, after Vaclav Kotesovec *)
A235798
Triangle read by rows: T(n,k) = number of occurrences of k in all overpartitions of n.
Original entry on oeis.org
2, 4, 2, 10, 4, 2, 20, 8, 4, 2, 38, 16, 8, 4, 2, 68, 30, 16, 8, 4, 2, 118, 52, 28, 16, 8, 4, 2, 196, 88, 48, 28, 16, 8, 4, 2, 318, 144, 82, 48, 28, 16, 8, 4, 2, 504, 230, 132, 80, 48, 28, 16, 8, 4, 2, 782, 360, 208, 128, 80, 48, 28, 16, 8, 4, 2, 1192, 552, 324, 202, 128, 80, 48, 28, 16, 8, 4, 2
Offset: 1
Triangle begins:
2;
4, 2;
10, 4, 2;
20, 8, 4, 2;
38, 16, 8, 4, 2;
68, 30, 16, 8, 4, 2;
...
-
A(n)={my(p=prod(k=1, n, (1 + x^k)/(1 - x^k) + O(x*x^n))); Mat(vector(n, k, Col(2*(p + O(x*x^(n-k)))*x^k/((1 - x^k)*(1 + x^k)), -n)))}
{ my(T=A(10)); for(n=1, #T, print(T[n, 1..n])) } \\ Andrew Howroyd, Feb 19 2020
A230441
Number of overpartitions of n minus the number of partitions of n.
Original entry on oeis.org
0, 1, 2, 5, 9, 17, 29, 49, 78, 124, 190, 288, 427, 627, 905, 1296, 1831, 2567, 3563, 4910, 6709, 9112, 12286, 16473, 21953, 29108, 38388, 50398, 65850, 85683, 111020, 143302, 184263, 236113, 301498, 383757, 486909, 615955, 776921, 977263, 1225934, 1533945
Offset: 0
The 14 overpartitions of 4 are
01: [4],
02: [4'],
03: [2, 2],
04: [2', 2],
05: [3, 1],
06: [3', 1],
07: [3, 1'],
08: [3', 1'],
09: [2, 1, 1],
10: [2', 1, 1],
11: [2, 1', 1],
12: [2', 1', 1],
13: [1, 1, 1, 1],
14: [1', 1, 1, 1].
There are 9 overpartitions that contain at least one overlined part, so a(4) = 9. - _Omar E. Pol_, Jan 19 2014
-
b:= proc(n, i) option remember; `if`(n=0, [1$2], `if`(i<1, [0$2],
b(n, i-1) +add((l->l+[0, l[2]])(b(n-i*j, i-1)), j=1..n/i)))
end:
a:= n-> (l->l[2]-l[1])(b(n$2)):
seq(a(n), n=0..40); # Alois P. Heinz, Jan 30 2014
-
b[n_, i_] := b[n, i] = If[n==0, {1, 1}, If[i<1, {0, 0}, b[n, i-1] + Sum[Function[ {l}, l+{0, l[[2]]}][b[n-i*j, i-1]], {j, 1, n/i}]]]; a[n_] := Function[{l}, l[[2]]-l[[1]]][b[n, n]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jul 28 2015, after Alois P. Heinz *)
A236000
Triangle read by rows in which row n lists the overpartitions of n in colexicographic order.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 3, 1, 3, 1, 3, 1, 2, 2, 2, 2, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1
Offset: 1
Triangle begins:
[1], [1];
[1, 1], [1, 1], [2], [2];
[1, 1, 1], [1, 1, 1], [2, 1], [2, 1], [2, 1], [2, 1], [3], [3];
[1, 1, 1, 1], [1, 1, 1, 1], [2, 1, 1], [2, 1, 1], [2, 1, 1], [2, 1, 1], [3, 1], [3, 1], [3, 1], [3, 1], [2, 2], [2, 2], [4], [4];
...
Illustration of initial terms (n: 1..4)
-----------------------------------------
n Diagram Overpartition
-----------------------------------------
. _
1 |.| 1',
1 |_| 1;
. _ _
2 |.| | 1', 1,
2 |_| | 1, 1,
2 | .| 2',
2 |_ _| 2;
. _ _ _
3 |.| | | 1', 1, 1,
3 |_| | | 1, 1, 1,
3 | .|.| 2', 1',
3 | |.| 2, 1',
3 | .| | 2', 1,
3 |_ _| | 2, 1,
3 | .| 3',
3 |_ _ _| 3;
. _ _ _ _
4 |.| | | | 1', 1, 1, 1,
4 |_| | | | 1, 1, 1, 1,
4 | .|.| | 2', 1', 1,
4 | |.| | 2, 1', 1,
4 | .| | | 2', 1, 1,
4 |_ _| | | 2, 1, 1,
4 | .|.| 3', 1',
4 | |.| 3, 1',
4 | .| | 3', 1,
4 |_ _ _| | 3, 1,
4 | .| | 2', 2,
4 |_ _| | 2, 2,
4 | .| 4',
4 |_ _ _ _| 4;
.
A236001
Sum of positive ranks of all overpartitions of n.
Original entry on oeis.org
0, 2, 4, 10, 20, 36, 64, 110, 180, 288, 452, 696, 1052, 1568, 2304, 3346, 4808, 6838, 9636, 13464, 18664, 25684, 35104, 47672, 64348, 86368, 115304, 153152, 202452, 266404, 349032, 455406, 591856, 766284, 988544, 1270862, 1628380, 2079828, 2648296, 3362180
Offset: 1
For n = 4 we have:
---------------------------
Overpartitions
of 4 Rank
---------------------------
4 4 - 1 = 3
4 4 - 1 = 3
2+2 2 - 2 = 0
2+2 2 - 2 = 0
3+1 3 - 2 = 1
3+1 3 - 2 = 1
3+1 3 - 2 = 1
3+1 3 - 2 = 1
2+1+1 2 - 3 = -1
2+1+1 2 - 3 = -1
2+1+1 2 - 3 = -1
2+1+1 2 - 3 = -1
1+1+1+1 1 - 4 = -3
1+1+1+1 1 - 4 = -3
---------------------------
The sum of positive ranks of all overpartitions of 4 is 3+3+1+1+1+1 = 10 so a(4) = 10.
-
a(n)={my(s=0); forpart(p=n, my(r=p[#p]-#p); if(r>0, s+=r*2^#Set(p))); s} \\ Andrew Howroyd, Feb 19 2020
A235797
Triangle read by rows in which T(n,k) is the sum of the k-th largest elements in all overpartitions of n.
Original entry on oeis.org
2, 6, 2, 16, 6, 2, 34, 14, 6, 2, 68, 30, 14, 6, 2, 128, 60, 30, 14, 6, 2
Offset: 1
Triangle begins:
2;
6, 2;
16, 6, 2;
34, 14, 6, 2;
68, 30, 14, 6, 2;
128, 60, 30, 14, 6, 2;
...
A236625
Total number of parts in all overcompositions of n.
Original entry on oeis.org
0, 2, 6, 24, 66, 180, 496, 1272, 3202, 7798, 18980, 45076, 106288, 246956, 568776, 1299184, 2944654, 6630660, 14838606, 33026000, 73126376, 161198136, 353812612, 773645124, 1685548792, 3660364490, 7924414752, 17107225340, 36832846344, 79107019964, 169505684844
Offset: 0
For n = 3 the 12 overcompositions of 3 are [3], [3'], [1, 2], [1', 2], [1, 2'], [1', 2'], [2, 1], [2', 1], [2, 1'], [2', 1'], [1, 1, 1], [1', 1, 1]. There are 24 parts, so a(3) = 24.
-
b:= proc(n, i, p) option remember; `if`(n=0, [p!, 0],
`if`(i<1, 0, add((p-> p+[0, p[1]*j])(1/j!*
`if`(j>0, 2, 1)*b(n-i*j, i-1, p+j)), j=0..n/i)))
end:
a:= n-> b(n$2, 0)[2]:
seq(a(n), n=0..35); # Alois P. Heinz, Apr 28 2016
-
b[n_, i_, p_] := b[n, i, p] = If[n == 0, {p!, 0}, If[i < 1, {0, 0}, Sum[# + {0, #[[1]]*j}&[1/j!*If[j > 0, 2, 1]*b[n - i*j, i - 1, p + j]], {j, 0, n/i}]]];
a[n_] := b[n, n, 0][[2]];
Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Nov 03 2022, after Alois P. Heinz *)
A335651
a(n) is the sum, over all overpartitions of n, of the non-overlined parts.
Original entry on oeis.org
1, 5, 14, 35, 74, 150, 280, 505, 875, 1470, 2402, 3850, 6034, 9300, 14120, 21131, 31220, 45619, 65930, 94374, 133892, 188350, 262904, 364350, 501459, 685762, 932200, 1259944, 1693750, 2265380, 3015152, 3994585, 5268988, 6920700, 9053748, 11798873, 15319610, 19820738, 25557560
Offset: 1
The 8 overpartitions of 3 are [3], [3'], [2,1], [2,1'], [2',1], [2',1'], [1,1,1], [1',1,1], and so a(3) = 14.
Cf.
A305102 (number of non-overlined parts).
-
my(N=44, q='q+O('q^N)); Vec( prod(k=1,N, (1+q^k)/(1-q^k)) * sum(k=1,N, k*q^k/(1-q^k)) ) \\ Joerg Arndt, Jun 18 2020
A335666
a(n) is the sum, over all overpartitions of n, of the overlined parts.
Original entry on oeis.org
1, 3, 10, 21, 46, 90, 168, 295, 511, 850, 1382, 2198, 3430, 5260, 7960, 11861, 17468, 25445, 36670, 52346, 74092, 103986, 144840, 200322, 275191, 375662, 509816, 687960, 923442, 1233340, 1639312, 2168999, 2857460, 3748772, 4898652, 6377023, 8271294, 10690830, 13771912, 17683642
Offset: 1
The 8 overpartitions of 8 are [3], [3'], [2,1], [2,1'], [2',1], [2',1'], [1,1,1], [1',1,1], and so a(3) = 10.
Cf.
A305101 (number of overlined parts).
-
my(N=44, q='q+O('q^N)); Vec( prod(k=1,N, (1+q^k)/(1-q^k)) * sum(k=1,N, k*q^k/(1+q^k)) ) \\ Joerg Arndt, Jun 18 2020
Showing 1-10 of 14 results.
Comments