A235792
Total number of parts in all overpartitions of n.
Original entry on oeis.org
2, 6, 16, 34, 68, 128, 228, 390, 650, 1052, 1664, 2584, 3940, 5916, 8768, 12826, 18552, 26566, 37672, 52956, 73848, 102192, 140420, 191688, 260038, 350700, 470384, 627604, 833236, 1101080, 1448500, 1897438, 2475464, 3217016, 4165200, 5373714, 6909180, 8854288
Offset: 1
-
b:= proc(n, i) option remember; `if`(n=0, [1, 0],
`if`(i<1, [0$2], b(n, i-1)+add((l-> l+[0, l[1]*j])
(2*b(n-i*j, i-1)), j=1..n/i)))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=1..40); # Alois P. Heinz, Jan 21 2014
-
b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i<1, {0, 0}, b[n, i-1] + Sum[ Function[l, l+{0, l[[1]]*j}][2*b[n-i*j, i-1]], {j, 1, n/i}]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
A235790
Triangle read by rows: T(n,k) = 2^k*A116608(n,k), n>=1, k>=1.
Original entry on oeis.org
2, 4, 4, 4, 6, 8, 4, 20, 8, 24, 8, 4, 44, 16, 8, 52, 40, 6, 68, 80, 8, 88, 120, 16, 4, 108, 200, 32, 12, 116, 296, 80, 4, 148, 416, 160, 8, 176, 536, 320, 8, 176, 776, 480, 32, 10, 220, 936, 832, 64, 4, 236, 1232, 1232, 160, 12, 272, 1472, 1872, 320
Offset: 1
Triangle begins:
2;
4;
4, 4;
6, 8;
4, 20;
8, 24, 8;
4, 44, 16;
8, 52, 40;
6, 68, 80;
8, 88, 120, 16;
4, 108, 200, 32;
12, 116, 296, 80;
4, 148, 416, 160;
8, 176, 536, 320;
8, 176, 776, 480, 32;
10, 220, 936, 832, 64;
4, 236, 1232, 1232, 160;
12, 272, 1472, 1872, 320;
4, 284, 1880, 2592, 640;
12, 324, 2216, 3632, 1152;
8, 328, 2704, 4944, 1856, 64;
...
Cf.
A000217,
A003056,
A116608,
A196020,
A211971,
A235792,
A235793,
A235797,
A235798,
A235999,
A236000,
A236001.
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
expand(b(n, i-1)+add(x*b(n-i*j, i-1), j=1..n/i))))
end:
T:= n->(p->seq(2^i*coeff(p, x, i), i=1..degree(p)))(b(n$2)):
seq(T(n), n=1..20); # Alois P. Heinz, Jan 20 2014
-
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Expand[b[n, i-1] + Sum[x*b[n-i*j, i-1], {j, 1, n/i}]]]]; T[n_] := Function[p, Table[2^i * Coefficient[p, x, i], {i, 1, Exponent[p, x]}]][b[n, n]]; Table[T[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Oct 20 2016, after Alois P. Heinz *)
A235798
Triangle read by rows: T(n,k) = number of occurrences of k in all overpartitions of n.
Original entry on oeis.org
2, 4, 2, 10, 4, 2, 20, 8, 4, 2, 38, 16, 8, 4, 2, 68, 30, 16, 8, 4, 2, 118, 52, 28, 16, 8, 4, 2, 196, 88, 48, 28, 16, 8, 4, 2, 318, 144, 82, 48, 28, 16, 8, 4, 2, 504, 230, 132, 80, 48, 28, 16, 8, 4, 2, 782, 360, 208, 128, 80, 48, 28, 16, 8, 4, 2, 1192, 552, 324, 202, 128, 80, 48, 28, 16, 8, 4, 2
Offset: 1
Triangle begins:
2;
4, 2;
10, 4, 2;
20, 8, 4, 2;
38, 16, 8, 4, 2;
68, 30, 16, 8, 4, 2;
...
-
A(n)={my(p=prod(k=1, n, (1 + x^k)/(1 - x^k) + O(x*x^n))); Mat(vector(n, k, Col(2*(p + O(x*x^(n-k)))*x^k/((1 - x^k)*(1 + x^k)), -n)))}
{ my(T=A(10)); for(n=1, #T, print(T[n, 1..n])) } \\ Andrew Howroyd, Feb 19 2020
A236000
Triangle read by rows in which row n lists the overpartitions of n in colexicographic order.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 3, 1, 3, 1, 3, 1, 2, 2, 2, 2, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1
Offset: 1
Triangle begins:
[1], [1];
[1, 1], [1, 1], [2], [2];
[1, 1, 1], [1, 1, 1], [2, 1], [2, 1], [2, 1], [2, 1], [3], [3];
[1, 1, 1, 1], [1, 1, 1, 1], [2, 1, 1], [2, 1, 1], [2, 1, 1], [2, 1, 1], [3, 1], [3, 1], [3, 1], [3, 1], [2, 2], [2, 2], [4], [4];
...
Illustration of initial terms (n: 1..4)
-----------------------------------------
n Diagram Overpartition
-----------------------------------------
. _
1 |.| 1',
1 |_| 1;
. _ _
2 |.| | 1', 1,
2 |_| | 1, 1,
2 | .| 2',
2 |_ _| 2;
. _ _ _
3 |.| | | 1', 1, 1,
3 |_| | | 1, 1, 1,
3 | .|.| 2', 1',
3 | |.| 2, 1',
3 | .| | 2', 1,
3 |_ _| | 2, 1,
3 | .| 3',
3 |_ _ _| 3;
. _ _ _ _
4 |.| | | | 1', 1, 1, 1,
4 |_| | | | 1, 1, 1, 1,
4 | .|.| | 2', 1', 1,
4 | |.| | 2, 1', 1,
4 | .| | | 2', 1, 1,
4 |_ _| | | 2, 1, 1,
4 | .|.| 3', 1',
4 | |.| 3, 1',
4 | .| | 3', 1,
4 |_ _ _| | 3, 1,
4 | .| | 2', 2,
4 |_ _| | 2, 2,
4 | .| 4',
4 |_ _ _ _| 4;
.
A235797
Triangle read by rows in which T(n,k) is the sum of the k-th largest elements in all overpartitions of n.
Original entry on oeis.org
2, 6, 2, 16, 6, 2, 34, 14, 6, 2, 68, 30, 14, 6, 2, 128, 60, 30, 14, 6, 2
Offset: 1
Triangle begins:
2;
6, 2;
16, 6, 2;
34, 14, 6, 2;
68, 30, 14, 6, 2;
128, 60, 30, 14, 6, 2;
...
A335651
a(n) is the sum, over all overpartitions of n, of the non-overlined parts.
Original entry on oeis.org
1, 5, 14, 35, 74, 150, 280, 505, 875, 1470, 2402, 3850, 6034, 9300, 14120, 21131, 31220, 45619, 65930, 94374, 133892, 188350, 262904, 364350, 501459, 685762, 932200, 1259944, 1693750, 2265380, 3015152, 3994585, 5268988, 6920700, 9053748, 11798873, 15319610, 19820738, 25557560
Offset: 1
The 8 overpartitions of 3 are [3], [3'], [2,1], [2,1'], [2',1], [2',1'], [1,1,1], [1',1,1], and so a(3) = 14.
Cf.
A305102 (number of non-overlined parts).
-
my(N=44, q='q+O('q^N)); Vec( prod(k=1,N, (1+q^k)/(1-q^k)) * sum(k=1,N, k*q^k/(1-q^k)) ) \\ Joerg Arndt, Jun 18 2020
A335666
a(n) is the sum, over all overpartitions of n, of the overlined parts.
Original entry on oeis.org
1, 3, 10, 21, 46, 90, 168, 295, 511, 850, 1382, 2198, 3430, 5260, 7960, 11861, 17468, 25445, 36670, 52346, 74092, 103986, 144840, 200322, 275191, 375662, 509816, 687960, 923442, 1233340, 1639312, 2168999, 2857460, 3748772, 4898652, 6377023, 8271294, 10690830, 13771912, 17683642
Offset: 1
The 8 overpartitions of 8 are [3], [3'], [2,1], [2,1'], [2',1], [2',1'], [1,1,1], [1',1,1], and so a(3) = 10.
Cf.
A305101 (number of overlined parts).
-
my(N=44, q='q+O('q^N)); Vec( prod(k=1,N, (1+q^k)/(1-q^k)) * sum(k=1,N, k*q^k/(1+q^k)) ) \\ Joerg Arndt, Jun 18 2020
A236626
Sum of all parts of all overcompositions of n.
Original entry on oeis.org
2, 8, 36, 104, 300, 864, 2268, 5824, 14418, 35760, 85888, 204816, 479804, 1113280, 2560560, 5836704, 13209612, 29690208, 66332572, 147350880, 325780056, 716862256, 1571067072, 3429697920, 7461222850, 16178111560, 34973640108, 75392349648
Offset: 1
For n = 3 the 12 overcompositions of 3 are [3], [3'], [1, 2], [1', 2], [1, 2'], [1', 2'], [2, 1], [2', 1], [2, 1'], [2', 1'], [1, 1, 1], [1', 1, 1], hence the sum of all parts is 3+3+1+2+1+2+1+2+1+2+2+1+2+1+2+1+2+1+1+1+1+1+1+1 = 3*12 = 36, so a(3) = 36.
Showing 1-8 of 8 results.
Comments