A236625 Total number of parts in all overcompositions of n.
0, 2, 6, 24, 66, 180, 496, 1272, 3202, 7798, 18980, 45076, 106288, 246956, 568776, 1299184, 2944654, 6630660, 14838606, 33026000, 73126376, 161198136, 353812612, 773645124, 1685548792, 3660364490, 7924414752, 17107225340, 36832846344, 79107019964, 169505684844
Offset: 0
Keywords
Examples
For n = 3 the 12 overcompositions of 3 are [3], [3'], [1, 2], [1', 2], [1, 2'], [1', 2'], [2, 1], [2', 1], [2, 1'], [2', 1'], [1, 1, 1], [1', 1, 1]. There are 24 parts, so a(3) = 24.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(n, i, p) option remember; `if`(n=0, [p!, 0], `if`(i<1, 0, add((p-> p+[0, p[1]*j])(1/j!* `if`(j>0, 2, 1)*b(n-i*j, i-1, p+j)), j=0..n/i))) end: a:= n-> b(n$2, 0)[2]: seq(a(n), n=0..35); # Alois P. Heinz, Apr 28 2016
-
Mathematica
b[n_, i_, p_] := b[n, i, p] = If[n == 0, {p!, 0}, If[i < 1, {0, 0}, Sum[# + {0, #[[1]]*j}&[1/j!*If[j > 0, 2, 1]*b[n - i*j, i - 1, p + j]], {j, 0, n/i}]]]; a[n_] := b[n, n, 0][[2]]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Nov 03 2022, after Alois P. Heinz *)
Extensions
a(6)-a(30) from Alois P. Heinz, Feb 02 2014
Comments