A235792
Total number of parts in all overpartitions of n.
Original entry on oeis.org
2, 6, 16, 34, 68, 128, 228, 390, 650, 1052, 1664, 2584, 3940, 5916, 8768, 12826, 18552, 26566, 37672, 52956, 73848, 102192, 140420, 191688, 260038, 350700, 470384, 627604, 833236, 1101080, 1448500, 1897438, 2475464, 3217016, 4165200, 5373714, 6909180, 8854288
Offset: 1
-
b:= proc(n, i) option remember; `if`(n=0, [1, 0],
`if`(i<1, [0$2], b(n, i-1)+add((l-> l+[0, l[1]*j])
(2*b(n-i*j, i-1)), j=1..n/i)))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=1..40); # Alois P. Heinz, Jan 21 2014
-
b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i<1, {0, 0}, b[n, i-1] + Sum[ Function[l, l+{0, l[[1]]*j}][2*b[n-i*j, i-1]], {j, 1, n/i}]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
A235790
Triangle read by rows: T(n,k) = 2^k*A116608(n,k), n>=1, k>=1.
Original entry on oeis.org
2, 4, 4, 4, 6, 8, 4, 20, 8, 24, 8, 4, 44, 16, 8, 52, 40, 6, 68, 80, 8, 88, 120, 16, 4, 108, 200, 32, 12, 116, 296, 80, 4, 148, 416, 160, 8, 176, 536, 320, 8, 176, 776, 480, 32, 10, 220, 936, 832, 64, 4, 236, 1232, 1232, 160, 12, 272, 1472, 1872, 320
Offset: 1
Triangle begins:
2;
4;
4, 4;
6, 8;
4, 20;
8, 24, 8;
4, 44, 16;
8, 52, 40;
6, 68, 80;
8, 88, 120, 16;
4, 108, 200, 32;
12, 116, 296, 80;
4, 148, 416, 160;
8, 176, 536, 320;
8, 176, 776, 480, 32;
10, 220, 936, 832, 64;
4, 236, 1232, 1232, 160;
12, 272, 1472, 1872, 320;
4, 284, 1880, 2592, 640;
12, 324, 2216, 3632, 1152;
8, 328, 2704, 4944, 1856, 64;
...
Cf.
A000217,
A003056,
A116608,
A196020,
A211971,
A235792,
A235793,
A235797,
A235798,
A235999,
A236000,
A236001.
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
expand(b(n, i-1)+add(x*b(n-i*j, i-1), j=1..n/i))))
end:
T:= n->(p->seq(2^i*coeff(p, x, i), i=1..degree(p)))(b(n$2)):
seq(T(n), n=1..20); # Alois P. Heinz, Jan 20 2014
-
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Expand[b[n, i-1] + Sum[x*b[n-i*j, i-1], {j, 1, n/i}]]]]; T[n_] := Function[p, Table[2^i * Coefficient[p, x, i], {i, 1, Exponent[p, x]}]][b[n, n]]; Table[T[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Oct 20 2016, after Alois P. Heinz *)
A235793
Sum of all parts of all overpartitions of n.
Original entry on oeis.org
2, 8, 24, 56, 120, 240, 448, 800, 1386, 2320, 3784, 6048, 9464, 14560, 22080, 32992, 48688, 71064, 102600, 146720, 207984, 292336, 407744, 564672, 776650, 1061424, 1442016, 1947904, 2617192, 3498720, 4654464, 6163584, 8126448, 10669472, 13952400, 18175896
Offset: 1
-
b:= proc(n, i) option remember; `if`(n=0, [1, 0],
`if`(i<1, [0$2], b(n, i-1)+add((l-> l+[0, l[1]*i*j])
(2*b(n-i*j, i-1)), j=1..n/i)))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=1..40); # Alois P. Heinz, Jan 21 2014
-
Table[n*Sum[PartitionsP[n-k]*PartitionsQ[k], {k, 0, n}], {n, 1, 40}] (* Jean-François Alcover, Oct 20 2016, after Vaclav Kotesovec *)
A235798
Triangle read by rows: T(n,k) = number of occurrences of k in all overpartitions of n.
Original entry on oeis.org
2, 4, 2, 10, 4, 2, 20, 8, 4, 2, 38, 16, 8, 4, 2, 68, 30, 16, 8, 4, 2, 118, 52, 28, 16, 8, 4, 2, 196, 88, 48, 28, 16, 8, 4, 2, 318, 144, 82, 48, 28, 16, 8, 4, 2, 504, 230, 132, 80, 48, 28, 16, 8, 4, 2, 782, 360, 208, 128, 80, 48, 28, 16, 8, 4, 2, 1192, 552, 324, 202, 128, 80, 48, 28, 16, 8, 4, 2
Offset: 1
Triangle begins:
2;
4, 2;
10, 4, 2;
20, 8, 4, 2;
38, 16, 8, 4, 2;
68, 30, 16, 8, 4, 2;
...
-
A(n)={my(p=prod(k=1, n, (1 + x^k)/(1 - x^k) + O(x*x^n))); Mat(vector(n, k, Col(2*(p + O(x*x^(n-k)))*x^k/((1 - x^k)*(1 + x^k)), -n)))}
{ my(T=A(10)); for(n=1, #T, print(T[n, 1..n])) } \\ Andrew Howroyd, Feb 19 2020
A236000
Triangle read by rows in which row n lists the overpartitions of n in colexicographic order.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 3, 1, 3, 1, 3, 1, 2, 2, 2, 2, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1
Offset: 1
Triangle begins:
[1], [1];
[1, 1], [1, 1], [2], [2];
[1, 1, 1], [1, 1, 1], [2, 1], [2, 1], [2, 1], [2, 1], [3], [3];
[1, 1, 1, 1], [1, 1, 1, 1], [2, 1, 1], [2, 1, 1], [2, 1, 1], [2, 1, 1], [3, 1], [3, 1], [3, 1], [3, 1], [2, 2], [2, 2], [4], [4];
...
Illustration of initial terms (n: 1..4)
-----------------------------------------
n Diagram Overpartition
-----------------------------------------
. _
1 |.| 1',
1 |_| 1;
. _ _
2 |.| | 1', 1,
2 |_| | 1, 1,
2 | .| 2',
2 |_ _| 2;
. _ _ _
3 |.| | | 1', 1, 1,
3 |_| | | 1, 1, 1,
3 | .|.| 2', 1',
3 | |.| 2, 1',
3 | .| | 2', 1,
3 |_ _| | 2, 1,
3 | .| 3',
3 |_ _ _| 3;
. _ _ _ _
4 |.| | | | 1', 1, 1, 1,
4 |_| | | | 1, 1, 1, 1,
4 | .|.| | 2', 1', 1,
4 | |.| | 2, 1', 1,
4 | .| | | 2', 1, 1,
4 |_ _| | | 2, 1, 1,
4 | .|.| 3', 1',
4 | |.| 3, 1',
4 | .| | 3', 1,
4 |_ _ _| | 3, 1,
4 | .| | 2', 2,
4 |_ _| | 2, 2,
4 | .| 4',
4 |_ _ _ _| 4;
.
A236001
Sum of positive ranks of all overpartitions of n.
Original entry on oeis.org
0, 2, 4, 10, 20, 36, 64, 110, 180, 288, 452, 696, 1052, 1568, 2304, 3346, 4808, 6838, 9636, 13464, 18664, 25684, 35104, 47672, 64348, 86368, 115304, 153152, 202452, 266404, 349032, 455406, 591856, 766284, 988544, 1270862, 1628380, 2079828, 2648296, 3362180
Offset: 1
For n = 4 we have:
---------------------------
Overpartitions
of 4 Rank
---------------------------
4 4 - 1 = 3
4 4 - 1 = 3
2+2 2 - 2 = 0
2+2 2 - 2 = 0
3+1 3 - 2 = 1
3+1 3 - 2 = 1
3+1 3 - 2 = 1
3+1 3 - 2 = 1
2+1+1 2 - 3 = -1
2+1+1 2 - 3 = -1
2+1+1 2 - 3 = -1
2+1+1 2 - 3 = -1
1+1+1+1 1 - 4 = -3
1+1+1+1 1 - 4 = -3
---------------------------
The sum of positive ranks of all overpartitions of 4 is 3+3+1+1+1+1 = 10 so a(4) = 10.
-
a(n)={my(s=0); forpart(p=n, my(r=p[#p]-#p); if(r>0, s+=r*2^#Set(p))); s} \\ Andrew Howroyd, Feb 19 2020
Showing 1-6 of 6 results.
Comments