A235793 Sum of all parts of all overpartitions of n.
2, 8, 24, 56, 120, 240, 448, 800, 1386, 2320, 3784, 6048, 9464, 14560, 22080, 32992, 48688, 71064, 102600, 146720, 207984, 292336, 407744, 564672, 776650, 1061424, 1442016, 1947904, 2617192, 3498720, 4654464, 6163584, 8126448, 10669472, 13952400, 18175896
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0$2], b(n, i-1)+add((l-> l+[0, l[1]*i*j]) (2*b(n-i*j, i-1)), j=1..n/i))) end: a:= n-> b(n$2)[2]: seq(a(n), n=1..40); # Alois P. Heinz, Jan 21 2014
-
Mathematica
Table[n*Sum[PartitionsP[n-k]*PartitionsQ[k], {k, 0, n}], {n, 1, 40}] (* Jean-François Alcover, Oct 20 2016, after Vaclav Kotesovec *)
Formula
a(n) = n*A015128(n).
a(n) ~ exp(Pi*sqrt(n)) / 8. - Vaclav Kotesovec, May 19 2018
Comments