cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A236104 Triangle read by rows: T(n,k), n >= 1, k >= 1, in which column k lists k copies of the positive squares in nondecreasing order, and the first element of column k is in row k(k+1)/2.

Original entry on oeis.org

1, 4, 9, 1, 16, 1, 25, 4, 36, 4, 1, 49, 9, 1, 64, 9, 1, 81, 16, 4, 100, 16, 4, 1, 121, 25, 4, 1, 144, 25, 9, 1, 169, 36, 9, 1, 196, 36, 9, 4, 225, 49, 16, 4, 1, 256, 49, 16, 4, 1, 289, 64, 16, 4, 1, 324, 64, 25, 9, 1, 361, 81, 25, 9, 1, 400, 81, 25, 9, 4
Offset: 1

Views

Author

Omar E. Pol, Jan 23 2014

Keywords

Comments

These are the squares of the entries of the triangle in A235791: T(n,k) = (A235791(n,k))^2.
Row n has length A003056(n) hence the first element of column k is in row A000217(k).
Columns 1-3 (including the initial zeros) are A000290, A008794, A211547.
Also column k lists the partial sums of the k-th column of triangle A196020 which gives an identity for sigma.
Since all the elements of this sequence are squares, we can draw an illustration of the alternating sum of row n step by step, and a symmetric diagram for A000203, A024916, A004125; see example.
For more information about the diagram see A237593.

Examples

			Triangle begins:
    1;
    4;
    9,   1;
   16,   1;
   25,   4;
   36,   4,   1;
   49,   9,   1;
   64,   9,   1;
   81,  16,   4;
  100,  16,   4,   1;
  121,  25,   4,   1;
  144,  25,   9,   1;
  169,  36,   9,   1;
  196,  36,   9,   4;
  225,  49,  16,   4,   1;
  256,  49,  16,   4,   1;
  289,  64,  16,   4,   1;
  324,  64,  25,   9,   1;
  361,  81,  25,   9,   1;
  400,  81,  25,   9,   4;
  441, 100,  36,   9,   4,   1;
  484, 100,  36,  16,   4,   1;
  529, 121,  36,  16,   4,   1;
  576, 121,  49,  16,   4,   1;
  ...
For n = 6 the sum of all divisors of all positive integers <= 6 is [1] + [1+2] + [1+3] + [1+2+4] + [1+5] + [1+2+3+6] = 1 + 3 + 4 + 7 + 6 + 12 = 33. On the other hand the 6th row of triangle is 36, 4, 1, therefore the alternating row sum is 36 - 4 + 1 = 33, equaling the sum of all divisors of all positive integers <= 6.
Illustration of the alternating sum of the 6th row as the area of a polygon (or the number of cells), step by step, in the fourth quadrant:
.     _ _ _ _ _ _       _ _ _ _ _ _       _ _ _ _ _ _
.    |           |     |           |     |           |
.    |           |     |           |     |           |
.    |           |     |           |     |           |
.    |           |     |        _ _|     |          _|
.    |           |     |       |         |        _|
.    |_ _ _ _ _ _|     |_ _ _ _|         |_ _ _ _|
.
.          36           36 - 4 = 32     36 - 4 + 1 = 33
.
Then using this method we can draw a symmetric diagram for A000203, A024916, A004125, as shown below:
--------------------------------------------------
n     A000203  A024916            Diagram
--------------------------------------------------
.                         _ _ _ _ _ _ _ _ _ _ _ _
1        1        1      |_| | | | | | | | | | | |
2        3        4      |_ _|_| | | | | | | | | |
3        4        8      |_ _|  _|_| | | | | | | |
4        7       15      |_ _ _|    _|_| | | | | |
5        6       21      |_ _ _|  _|  _ _|_| | | |
6       12       33      |_ _ _ _|  _| |  _ _|_| |
7        8       41      |_ _ _ _| |_ _|_|    _ _|
8       15       56      |_ _ _ _ _|  _|     |* *
9       13       69      |_ _ _ _ _| |      _|* *
10      18       87      |_ _ _ _ _ _|  _ _|* * *
11      12       99      |_ _ _ _ _ _| |* * * * *
12      28      127      |_ _ _ _ _ _ _|* * * * *
.
The total number of cells in the first n set of symmetric regions of the diagram equals A024916(n). It appears that the total number of cells in the n-th set of symmetric regions of the diagram equals sigma(n) = A000203(n). Example: for n = 12 the 12th row of triangle is 144, 25, 9, 1, hence the alternating sums is 144 - 25 + 9 - 1 = 127. On the other hand we have that A000290(12) - A004125(12) = 144 - 17 = A024916(12) = 127, equaling the total number of cells in the diagram after 12 stages. The number of cells in the 12th set of symmetric regions of the diagram is sigma(12) = A000203(12) = 28. Note that in this case there is only one region. Finally, the number of *'s is A004125(12) = 17.
Note that the diagram is also the top view of the stepped pyramid described in A245092. - _Omar E. Pol_, Feb 12 2018
		

Crossrefs

Programs

  • Mathematica
    Table[Ceiling[(n + 1)/k - (k + 1)/2]^2, {n, 20}, {k, Floor[(Sqrt[8 n + 1] - 1)/2]}] // Flatten (* Michael De Vlieger, Feb 10 2018, after Hartmut F. W. Hoft at A235791 *)
  • Python
    from sympy import sqrt
    import math
    def T(n, k): return int(math.ceil((n + 1)/k - (k + 1)/2))
    for n in range(1, 21): print([T(n, k)**2 for k in range(1, int(math.floor((sqrt(8*n + 1) - 1)/2)) + 1)]) # Indranil Ghosh, Apr 25 2017

Formula

Sum_{k=1..A003056(n)} (-1)^(k-1)*T(n,k) = A024916(n). [Although this was stated as a fact, as far as I can tell, no proof was known. However, Don Reble has recently found a proof, which will be added here soon. - N. J. A. Sloane, Nov 23 2020]
A000203(n) = Sum_{k=1..A003056(n)} (-1)^(k-1) * (T(n,k) - T(n-1,k)), assuming that T(k*(k+1)/2-1,k) = 0. - Omar E. Pol, Oct 10 2018

A236540 Triangle read by rows: T(n,k), n>=1, k>=1, in which column k lists k copies of the positive squares in nondecreasing order, except the first column which lists the triangular numbers, and the first element of column k is in row k(k+1)/2.

Original entry on oeis.org

0, 1, 3, 1, 6, 1, 10, 4, 15, 4, 1, 21, 9, 1, 28, 9, 1, 36, 16, 4, 45, 16, 4, 1, 55, 25, 4, 1, 66, 25, 9, 1, 78, 36, 9, 1, 91, 36, 9, 4, 105, 49, 16, 4, 1, 120, 49, 16, 4, 1, 136, 64, 16, 4, 1, 153, 64, 25, 9, 1, 171, 81, 25, 9, 1, 190, 81, 25, 9, 4, 210, 100, 36, 9, 4, 1
Offset: 1

Views

Author

Omar E. Pol, Jan 28 2014

Keywords

Comments

Gives an identity for the sum of all aliquot divisors of all positive integers <= n.
Alternating sum of row n equals A153485(n), i.e., Sum_{k=1..A003056(n)} (-1)^(k-1)*T(n,k) = A153485(n).
Row n has length A003056(n) hence the first element of column k is in row A000217(k).
Column 1 is A000217. Columns 2-3 are A008794, A211547, but without the zeros.
Column k lists the partial sums of the k-th column of triangle A231347 which gives an identity for the sum of aliquot divisors of n. - Omar E. Pol, Nov 11 2014

Examples

			Triangle begins:
    0;
    1;
    3,   1;
    6,   1;
   10,   4;
   15,   4,   1;
   21,   9,   1;
   28,   9,   1;
   36,  16,   4;
   45,  16,   4,   1;
   55,  25,   4,   1;
   66,  25,   9,   1;
   78,  36,   9,   1;
   91,  36,   9,   4;
  105,  49,  16,   4,  1;
  120,  49,  16,   4,  1;
  136,  64,  16,   4,  1;
  153,  64,  25,   9,  1;
  171,  81,  25,   9,  1;
  190,  81,  25,   9,  4;
  210, 100,  36,   9,  4,  1;
  231, 100,  36,  16,  4,  1;
  253, 121,  36,  16,  4,  1;
  276, 121,  49,  16,  4,  1;
  ...
For n = 6 the divisors of all positive integers <= 6 are [1], [1, 2], [1, 3], [1, 2, 4], [1, 5], [1, 2, 3, 6] hence the sum of all aliquot divisors is [0] + [1] + [1] + [1+2] + [1] + [1+2+3] = 0 + 1 + 1 + 3 + 1 + 6 = 12. On the other hand the 6th row of triangle is 15, 4, 1, therefore the alternating row sum is 15 - 4 + 1 = 12, equaling the sum of all aliquot divisors of all positive integers <= 6.
		

Crossrefs

A236109 Triangle read by rows: another version of A048158, only here the representation of A004125 is symmetric, as in the representation of A024916 and A000203.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 2, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 2, 3, 3, 0, 0, 0, 0, 0, 2, 3, 3, 0, 0, 0, 0, 0, 2, 2, 4, 4, 0, 0, 0, 0, 0, 0, 2, 3, 4, 4, 0, 0, 0, 0, 0, 0, 3, 4, 5, 5, 5, 0, 0, 0, 0, 0, 0, 0, 2, 2, 3, 5, 5, 0, 0, 0, 0, 0, 0, 0, 3
Offset: 1

Views

Author

Omar E. Pol, Jan 26 2014

Keywords

Comments

Row sums give A004125.
For more information see A236104, A237591, A237593, A237270.

Examples

			Triangle begins:
0;
0, 0;
0, 0, 1;
0, 0, 0, 1;
0, 0, 0, 2, 2;
0, 0, 0, 0, 1, 2;
0, 0, 0, 0, 2, 3, 3;
0, 0, 0, 0, 0, 2, 3, 3;
0, 0, 0, 0, 0, 2, 2, 4, 4;
0, 0, 0, 0, 0, 0, 2, 3, 4, 4;
0, 0, 0, 0, 0, 0, 3, 4, 5, 5, 5;
0, 0, 0, 0, 0, 0, 0, 2, 2, 3, 5, 5;
...
For the symmetric representation of A000203, A024916, A004125 in the fourth quadrant using a diagram which arises from the sequence A236104 see below:
--------------------------------------------------
n     A000203  A024916            Diagram
--------------------------------------------------
.                         _ _ _ _ _ _ _ _ _ _ _ _
1        1        1      |_| | | | | | | | | | | |
2        3        4      |_ _|_| | | | | | | | | |
3        4        8      |_ _|  _|_| | | | | | | |
4        7       15      |_ _ _|    _|_| | | | | |
5        6       21      |_ _ _|  _|  _ _|_| | | |
6       12       33      |_ _ _ _|  _| |  _ _|_| |
7        8       41      |_ _ _ _| |_ _|_|    _ _|
8       15       56      |_ _ _ _ _|  _|     |* *
9       13       69      |_ _ _ _ _| |      _|* *
10      18       87      |_ _ _ _ _ _|  _ _|* * *
11      12       99      |_ _ _ _ _ _| |* * * * *
12      28      127      |_ _ _ _ _ _ _|* * * * *
.
The 12th row is ........ 0,0,0,0,0,0,0,2,2,3,5,5
.
The total number of cells in the first n set of symmetric regions of the diagram equals A024916(n). It appears that the total number of cells in the n-th set of symmetric regions of the diagram equals sigma(n) = A000203(n). Example: for n = 12 the 12th row of triangle is 144, 25, 9, 1, hence the alternating sums is 144 - 25 + 9 - 1 = 127. On the other hand we have that A000290(12) - A004125(12) = 144 - 17 = A024916(12) = 127, equaling the total number of cells in the diagram after 12 stages. The number of cells in the 12th set of symmetric regions of the diagram is sigma(12) = A000203(12) = 28. Note that in this case there is only one region. The number of "*"'s is A004125(12) = 17.
		

Crossrefs

Showing 1-3 of 3 results.