A235867 G-cyclic numbers k such that A060968(k)^A060968(k) <> 1 (mod k) and A235863(k)^A235863(k) <> 1 (mod k).
77, 119, 133, 187, 217, 253, 287, 301, 319, 323, 341, 391, 399, 403, 407, 413, 437, 469, 517, 551, 553, 559, 583, 589, 623, 651, 667, 707, 713, 731, 737, 749, 779, 781, 803, 817, 851, 869, 871, 889, 893, 899, 903, 913, 917, 935, 943, 959, 969, 1001, 1003
Offset: 1
Keywords
Links
- Bill McEachen, Table of n, a(n) for n = 1..10000
- Jose María Grau, A. M. Oller-Marcen, Manuel Rodriguez and D. Sadornil, Fermat test with Gaussian base and Gaussian pseudoprimes, arXiv:1401.4708 [math.NT], 2014.
Programs
-
PARI
genit(maxx)={arr2=List();arr=List();for(ptr=1,maxx,if( gcd(ptr,A060968(ptr))==1,listput(arr,ptr)));for(ptr=2,#arr,n=arr[ptr];a=A060968(n)^A060968(n);b=A235863(n)^A235863(n);if(a%n!=1&&b%n!=1,listput(arr2,n)));} A060968(n)={my(f=factor(n)[,1]);q=n*prod(i=if(n%2,1,2),#f,if(f[i]%4==1,1-1/f[i],1+1/f[i]))*if(n%4,1,2);return(q);} \\taken from that sequence A235863(n)={my(f=factor(n));q=lcm(vector(#f~,i,my([p,e]=f[i,]);if(p==2,2^max(e-2,min(e,2)),p^(e-1)*if(p%4==1,p-1,p+1))));return (q);} \\taken from that sequence \\ Bill McEachen, Jul 16 2021
Comments