cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236020 Natural numbers n sorted by increasing values of k(n) = log_tau(n) (sigma(n)), where sigma(n) = A000203(n) = the sum of divisors of n and tau(n) = A000005(n) = the number of divisors of n.

Original entry on oeis.org

1, 2, 4, 6, 12, 8, 24, 3, 18, 36, 30, 60, 10, 20, 48, 72, 120, 16, 40, 84, 180, 42, 90, 240, 144, 360, 96, 168, 28, 420, 108, 80, 252, 720, 14, 15, 210, 840, 54, 56, 336, 480, 216, 126, 32, 504, 288, 9, 540, 1260, 300, 132, 140, 1680, 192, 2520, 1080, 600, 630
Offset: 1

Views

Author

Jaroslav Krizek, Jan 18 2014

Keywords

Comments

The number k(n) = log_tau(n) (sigma(n)) = log(sigma(n)) / log(tau(n)) is such that tau(n)^k(n) = sigma(n).
Conjecture: every natural number n has a unique value of k(n). [The conjecture is wrong: e.g., k(5) = k(22) = log(6)/log(2). - Amiram Eldar, Jan 17 2021]
See A236021 - sequence of numbers a(n) such that a(n) > a(k) for all k < n.

Examples

			For number 1; k(1) = 1.
For number 2; k(2) = log_tau(2) (sigma(2)) = log_2 (3) = 1.5849625007... = A020857.
		

Crossrefs

Programs

  • Mathematica
    A[nn_] := Ordering[ N[ Join[ {1}, Table[ Log[DivisorSigma[0, i], DivisorSigma[1, i]], {i, 2, nn} ] ] ] ];
    A236020[nn_] := A[nn^2][[1 ;; nn]];
    A236020[59] (* Robert P. P. McKone, Jan 17 2021 *)
  • PARI
    \\ warning: does not generate all the terms up to nn
    f(k) = if (k==1, 1, log(sigma(k)) / log(numdiv(k)));
    lista(nn) = vecsort(vector(nn, k, f(k)),, 1); \\ Michel Marcus, Jan 16 2021