A236043 Number of triangular numbers <= 10^n.
2, 5, 14, 45, 141, 447, 1414, 4472, 14142, 44721, 141421, 447214, 1414214, 4472136, 14142136, 44721360, 141421356, 447213595, 1414213562, 4472135955, 14142135624, 44721359550, 141421356237, 447213595500, 1414213562373, 4472135955000, 14142135623731
Offset: 0
Examples
There are 4472 triangular numbers less than or equal to 10^7 so a(7) = 4472.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J. Tanton, Cool Math Newsletter (November 2012)
Programs
-
Magma
[Floor(Sqrt(2*10^n+1/4) + 1/2): n in [1..30]]; // Vincenzo Librandi, Feb 08 2014
-
Maple
seq(floor(sqrt(2*10^n+1/4)+1/2),n=1..30); # Robert Israel, Dec 22 2024
-
Mathematica
Table[ Floor[ Sqrt[2*10^n + 1] + 1/2], {n, 25}] (* Vincenzo Librandi, Feb 08 2014; modified by Robert G. Wilson v, Jan 11 2015 *)
-
PARI
a236043(n)=floor(sqrt(2*10^n+1/4)+1/2) \\ Chris Boyd, Jan 19 2014
-
Python
from math import isqrt def A236043(n): return isqrt(10**n+1<<3)+1>>1 # Chai Wah Wu, Jun 14 2025
Formula
a(n) = floor( sqrt(2*10^n + 1/4) + 1/2 ), adapted from Tanton (see Links section). - Chris Boyd, Jan 19 2014
a(n) = A068092(n + 1) for n >= 2. - R. J. Mathar, Jan 20 2014
Extensions
More terms from Jon E. Schoenfield, Feb 07 2014
a(0) prepended by Andrew Howroyd, Dec 21 2024
Comments