cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236045 Primes p such that p^1+p+1, p^2+p+1, p^3+p+1, and p^4+p+1 are all prime.

Original entry on oeis.org

2, 5, 131, 2129, 9689, 27809, 36821, 46619, 611729, 746171, 987491, 1121189, 1486451, 2215529, 2701931, 4202171, 4481069, 4846469, 5162141, 5605949, 6931559, 7181039, 8608571, 9276821, 9762611, 11427491, 11447759, 12208019
Offset: 1

Views

Author

Derek Orr, Jan 18 2014

Keywords

Crossrefs

Cf. A219117.

Programs

  • Mathematica
    Select[Prime[Range[810000]],And@@PrimeQ[Table[#^n+#+1,{n,4}]]&] (* Harvey P. Dale, Apr 07 2014 *)
  • PARI
    list(maxx)={n=2; cnt=0; while(nBill McEachen, Feb 05 2014
  • Python
    import sympy
    from sympy import isprime
    {print(p) for p in range(10**8) if isprime(p) and isprime(p**1+p+1) and isprime(p**2+p+1) and isprime(p**3+p+1) and isprime(p**4+p+1)}