A236045 Primes p such that p^1+p+1, p^2+p+1, p^3+p+1, and p^4+p+1 are all prime.
2, 5, 131, 2129, 9689, 27809, 36821, 46619, 611729, 746171, 987491, 1121189, 1486451, 2215529, 2701931, 4202171, 4481069, 4846469, 5162141, 5605949, 6931559, 7181039, 8608571, 9276821, 9762611, 11427491, 11447759, 12208019
Offset: 1
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..150
Crossrefs
Cf. A219117.
Programs
-
Mathematica
Select[Prime[Range[810000]],And@@PrimeQ[Table[#^n+#+1,{n,4}]]&] (* Harvey P. Dale, Apr 07 2014 *)
-
PARI
list(maxx)={n=2; cnt=0; while(n
Bill McEachen, Feb 05 2014 -
Python
import sympy from sympy import isprime {print(p) for p in range(10**8) if isprime(p) and isprime(p**1+p+1) and isprime(p**2+p+1) and isprime(p**3+p+1) and isprime(p**4+p+1)}