A236056 Numbers k such that k^2 +- k +- 1 is prime for all four possibilities.
3, 6, 21, 456, 1365, 2205, 2451, 2730, 8541, 18486, 32199, 32319, 32781, 45864, 61215, 72555, 72561, 82146, 83259, 86604, 91371, 95199, 125334, 149331, 176889, 182910, 185535, 210846, 225666, 226254, 288420, 343161, 350091, 403941, 411501, 510399, 567204
Offset: 1
Keywords
Examples
1365^2 + 1365 + 1 = 1864591, 1365^2 + 1365 - 1 = 1864589, 1365^2 - 1365 + 1 = 1861861, and 1365^2 - 1365 - 1 = 1861859 are all prime, so 1365 is a term of this sequence.
Crossrefs
Programs
-
Maple
q:= k-> andmap(isprime, [seq(seq(k^2+i+j, j=[k, -k]), i=[1, -1])]): select(q, [3*t$t=1..200000])[]; # Alois P. Heinz, Feb 25 2020
-
Mathematica
Select[Range[568000],AllTrue[Flatten[{#^2+#+{1,-1},#^2-#+{1,-1}},1],PrimeQ]&] (* Harvey P. Dale, Jul 31 2022 *)
-
Python
import sympy from sympy import isprime {print(p) for p in range(10**6) if isprime(p**2+p+1) and isprime(p**2-p+1) and isprime(p**2+p-1) and isprime(p**2-p-1)}
Comments