cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236076 A skewed version of triangular array A122075.

Original entry on oeis.org

1, 0, 2, 0, 1, 3, 0, 0, 3, 5, 0, 0, 1, 7, 8, 0, 0, 0, 4, 15, 13, 0, 0, 0, 1, 12, 30, 21, 0, 0, 0, 0, 5, 31, 58, 34, 0, 0, 0, 0, 1, 18, 73, 109, 55, 0, 0, 0, 0, 0, 6, 54, 162, 201, 89, 0, 0, 0, 0, 0, 1, 25, 145, 344, 365, 144, 0, 0, 0, 0, 0, 0, 7, 85, 361
Offset: 0

Views

Author

Philippe Deléham, Jan 19 2014

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows, given by (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Subtriangle of the triangle A122950.

Examples

			Triangle begins:
  1;
  0,  2;
  0,  1,  3;
  0,  0,  3,  5;
  0,  0,  1,  7,  8;
  0,  0,  0,  4, 15, 13;
  0,  0,  0,  1, 12, 30, 21;
  0,  0,  0,  0,  5, 31, 58, 34;
		

Crossrefs

Cf. variant: A055830, A122075, A122950, A208337.
Cf. A167704 (diagonal sums), A000079 (row sums).
Cf. A111006.

Programs

  • Haskell
    a236076 n k = a236076_tabl !! n !! k
    a236076_row n = a236076_tabl !! n
    a236076_tabl = [1] : [0, 2] : f [1] [0, 2] where
       f us vs = ws : f vs ws where
         ws = [0] ++ zipWith (+) (zipWith (+) ([0] ++ us) (us ++ [0])) vs
    -- Reinhard Zumkeller, Jan 19 2014
    
  • Mathematica
    T[n_, k_]:= If[k<0 || k>n, 0, If[n==0 && k==0, 1, If[k==0, 0, If[n==1 && k==1, 2, T[n-1, k-1] + T[n-2, k-1] + T[n-2, k-2]]]]]; Table[T[n,k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, May 21 2019 *)
  • PARI
    {T(n,k) = if(k<0 || k>n, 0, if(n==0 && k==0, 1, if(k==0, 0, if(n==1 && k==1, 2, T(n-1,k-1) + T(n-2,k-1) + T(n-2,k-2) ))))}; \\ G. C. Greubel, May 21 2019
    
  • Sage
    def T(n, k):
        if (k<0 or k>n): return 0
        elif (n==0 and k==0): return 1
        elif (k==0): return 0
        elif (n==1 and k==1): return 2
        else: return T(n-1,k-1) + T(n-2,k-1) + T(n-2,k-2)
    [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 21 2019

Formula

G.f.: (1+x*y)/(1 - x*y - x^2*y - x^2*y^2).
T(n,k) = T(n-1,k-1) + T(n-2,k-1) + T(n-2,k-2), T(0,0)=1, T(1,0) = 0, T(1,1) = 2, T(n,k) = 0 if k < 0 or if k > n.
Sum_{k=0..n} T(n,k) = 2^n = A000079(n).
Sum_{n>=k} T(n,k) = A078057(k) = A001333(k+1).
T(n,n) = Fibonacci(n+2) = A000045(n+2).
T(n+1,n) = A023610(n-1), n >= 1.
T(n+2,n) = A129707(n).