A236076 A skewed version of triangular array A122075.
1, 0, 2, 0, 1, 3, 0, 0, 3, 5, 0, 0, 1, 7, 8, 0, 0, 0, 4, 15, 13, 0, 0, 0, 1, 12, 30, 21, 0, 0, 0, 0, 5, 31, 58, 34, 0, 0, 0, 0, 1, 18, 73, 109, 55, 0, 0, 0, 0, 0, 6, 54, 162, 201, 89, 0, 0, 0, 0, 0, 1, 25, 145, 344, 365, 144, 0, 0, 0, 0, 0, 0, 7, 85, 361
Offset: 0
Examples
Triangle begins: 1; 0, 2; 0, 1, 3; 0, 0, 3, 5; 0, 0, 1, 7, 8; 0, 0, 0, 4, 15, 13; 0, 0, 0, 1, 12, 30, 21; 0, 0, 0, 0, 5, 31, 58, 34;
Links
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- H. Fuks and J.M.G. Soto, Exponential convergence to equilibrium in cellular automata asymptotically emulating identity, arXiv:1306.1189 [nlin.CG], 2013.
Crossrefs
Programs
-
Haskell
a236076 n k = a236076_tabl !! n !! k a236076_row n = a236076_tabl !! n a236076_tabl = [1] : [0, 2] : f [1] [0, 2] where f us vs = ws : f vs ws where ws = [0] ++ zipWith (+) (zipWith (+) ([0] ++ us) (us ++ [0])) vs -- Reinhard Zumkeller, Jan 19 2014
-
Mathematica
T[n_, k_]:= If[k<0 || k>n, 0, If[n==0 && k==0, 1, If[k==0, 0, If[n==1 && k==1, 2, T[n-1, k-1] + T[n-2, k-1] + T[n-2, k-2]]]]]; Table[T[n,k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, May 21 2019 *)
-
PARI
{T(n,k) = if(k<0 || k>n, 0, if(n==0 && k==0, 1, if(k==0, 0, if(n==1 && k==1, 2, T(n-1,k-1) + T(n-2,k-1) + T(n-2,k-2) ))))}; \\ G. C. Greubel, May 21 2019
-
Sage
def T(n, k): if (k<0 or k>n): return 0 elif (n==0 and k==0): return 1 elif (k==0): return 0 elif (n==1 and k==1): return 2 else: return T(n-1,k-1) + T(n-2,k-1) + T(n-2,k-2) [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 21 2019
Comments