A236144 a(n) = F(floor( (n+3)/2 )) * L(floor( (n+2)/2 )) where F=Fibonacci and L=Lucas numbers.
2, 2, 1, 2, 6, 9, 12, 20, 35, 56, 88, 143, 234, 378, 609, 986, 1598, 2585, 4180, 6764, 10947, 17712, 28656, 46367, 75026, 121394, 196417, 317810, 514230, 832041, 1346268, 2178308, 3524579, 5702888, 9227464, 14930351, 24157818, 39088170, 63245985, 102334154
Offset: 0
Examples
G.f. = 2 + 2*x + x^2 + 2*x^3 + 6*x^4 + 9*x^5 + 12*x^6 + 20*x^7 + 35*x^8 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,1).
Programs
-
Magma
m:=60; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!(2-x^2-x^3)/(1-x-x^3-x^4)); // G. C. Greubel, Aug 07 2018 -
Mathematica
a[ n_] := Fibonacci[ Quotient[ n + 3, 2]] LucasL[ Quotient[ n, 2]]; CoefficientList[Series[(2-x^2-x^3)/(1-x-x^3-x^4), {x, 0, 60}], x] (* G. C. Greubel, Aug 07 2018 *)
-
PARI
{a(n) = fibonacci( (n+3)\2 ) * (fibonacci( n\2+1 ) + fibonacci( n\2-1 ))};
-
PARI
x='x+O('x^60); Vec((2-x^2-x^3)/(1-x-x^3-x^4)) \\ G. C. Greubel, Aug 07 2018
Formula
G.f.: (2 - x^2 - x^3) / (1 - x - x^3 - x^4) = (1 - x) * (2 + 2*x + x^2) / ((1 + x^2) * (1 - x - x^2)).
a(n) = a(n-1) + a(n-3) + a(n-4) for all n in Z.
0 = a(n)*a(n+2) + a(n+1)*(+a(n+2) -a(n+3)) for all n in Z.