cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236144 a(n) = F(floor( (n+3)/2 )) * L(floor( (n+2)/2 )) where F=Fibonacci and L=Lucas numbers.

Original entry on oeis.org

2, 2, 1, 2, 6, 9, 12, 20, 35, 56, 88, 143, 234, 378, 609, 986, 1598, 2585, 4180, 6764, 10947, 17712, 28656, 46367, 75026, 121394, 196417, 317810, 514230, 832041, 1346268, 2178308, 3524579, 5702888, 9227464, 14930351, 24157818, 39088170, 63245985, 102334154
Offset: 0

Views

Author

Michael Somos, Jan 19 2014

Keywords

Examples

			G.f. = 2 + 2*x + x^2 + 2*x^3 + 6*x^4 + 9*x^5 + 12*x^6 + 20*x^7 + 35*x^8 + ...
		

Crossrefs

Programs

  • Magma
    m:=60; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(2-x^2-x^3)/(1-x-x^3-x^4)); // G. C. Greubel, Aug 07 2018
  • Mathematica
    a[ n_] := Fibonacci[ Quotient[ n + 3, 2]] LucasL[ Quotient[ n, 2]];
    CoefficientList[Series[(2-x^2-x^3)/(1-x-x^3-x^4), {x, 0, 60}], x] (* G. C. Greubel, Aug 07 2018 *)
  • PARI
    {a(n) = fibonacci( (n+3)\2 ) * (fibonacci( n\2+1 ) + fibonacci( n\2-1 ))};
    
  • PARI
    x='x+O('x^60); Vec((2-x^2-x^3)/(1-x-x^3-x^4)) \\ G. C. Greubel, Aug 07 2018
    

Formula

G.f.: (2 - x^2 - x^3) / (1 - x - x^3 - x^4) = (1 - x) * (2 + 2*x + x^2) / ((1 + x^2) * (1 - x - x^2)).
a(n) = a(n-1) + a(n-3) + a(n-4) for all n in Z.
0 = a(n)*a(n+2) + a(n+1)*(+a(n+2) -a(n+3)) for all n in Z.
a(n) = A115008(n+2) - A115008(n+1).
a(n) = A115339(n) * A115339(n-1).
a(2*n - 1) = F(n+1) * L(n-1) = A128535(n+1). a(2*n) = F(n+1) * L(n) = A128534(n+1).
a(n) = A000045(n+1)+A057077(n). - R. J. Mathar, Sep 24 2021