A236174 Maximal prime among the base-k representations of the n-th prime, read in decimal, for k=2,3,...,10.
2, 11, 101, 13, 23, 31, 101, 103, 10111, 131, 43, 211, 131, 223, 101111, 311, 113, 331, 2111, 1013, 1021, 2221, 1103, 1011001, 1201, 1100101, 10211, 1223, 1231, 1301, 331, 2003, 211, 12011, 10010101, 2113, 10011101, 10100011, 2213, 10101101, 10110011, 20201, 2333, 21011, 3011, 11000111, 21211, 337, 3203, 11100101
Offset: 1
Examples
Let n=10, then prime(n)=29 (in base 10). The representations of 29 in bases 2,3,4,...,10 are 11101,1002,131,...,29 respectively. In this list 131 is the first and therefore the maximal prime. Thus a(10)=131.
Links
- Peter J. C. Moses, Table of n, a(n) for n = 1..2000
Programs
-
Mathematica
Map[First[First[Select[Map[{#,PrimeQ[#]}&,Map[FromDigits,IntegerDigits[Prime[#],Range[2,10]]]],#[[2]]==True&]]]&,Range[50]] Table[SelectFirst[Table[FromDigits[IntegerDigits[Prime[n],b]],{b,2,10}],PrimeQ],{n,80}] (* Harvey P. Dale, May 17 2024 *)
-
PARI
base_b(n, b) = { my(s=[], r, x); while(n>0, r = n%b; n = n\b; s = concat(r, s) ); x=10; eval(Pol(s)) } A236174(maxp) = { my(s=[], b, t); forprime(p=2, maxp, for(b=2, 10, t=base_b(p, b); if(isprime(t), s=concat(s, t); break) ) ); s } \\ Colin Barker, Jan 23 2014
-
Python
from sympy import prime, isprime def A236174(n): p = prime(n) for b in range(2,11): x, y, z = p, 0, 1 while x >= b: x, r = divmod(x,b) y += r*z z *= 10 y += x*z if isprime(y): return y # Chai Wah Wu, Jan 03 2015
Comments