cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236174 Maximal prime among the base-k representations of the n-th prime, read in decimal, for k=2,3,...,10.

Original entry on oeis.org

2, 11, 101, 13, 23, 31, 101, 103, 10111, 131, 43, 211, 131, 223, 101111, 311, 113, 331, 2111, 1013, 1021, 2221, 1103, 1011001, 1201, 1100101, 10211, 1223, 1231, 1301, 331, 2003, 211, 12011, 10010101, 2113, 10011101, 10100011, 2213, 10101101, 10110011, 20201, 2333, 21011, 3011, 11000111, 21211, 337, 3203, 11100101
Offset: 1

Views

Author

Vladimir Shevelev, Jan 19 2014

Keywords

Comments

Let p = n-th prime. Write p in base k, k=2,3,4,5,..., and stop when the result is a prime when looked at in base 10. - N. J. A. Sloane, Jan 25 2014

Examples

			Let n=10, then prime(n)=29 (in base 10). The representations of 29 in bases 2,3,4,...,10 are 11101,1002,131,...,29 respectively. In this list 131 is the first and therefore the maximal prime. Thus a(10)=131.
		

Crossrefs

Programs

  • Mathematica
    Map[First[First[Select[Map[{#,PrimeQ[#]}&,Map[FromDigits,IntegerDigits[Prime[#],Range[2,10]]]],#[[2]]==True&]]]&,Range[50]]
    Table[SelectFirst[Table[FromDigits[IntegerDigits[Prime[n],b]],{b,2,10}],PrimeQ],{n,80}] (* Harvey P. Dale, May 17 2024 *)
  • PARI
    base_b(n, b) = {
      my(s=[], r, x);
      while(n>0,
        r = n%b;
        n = n\b;
        s = concat(r, s)
      );
      x=10;
      eval(Pol(s))
    }
    A236174(maxp) = {
      my(s=[], b, t);
      forprime(p=2, maxp,
        for(b=2, 10,
          t=base_b(p, b);
          if(isprime(t), s=concat(s, t); break)
        )
      );
      s
    } \\ Colin Barker, Jan 23 2014
    
  • Python
    from sympy import prime, isprime
    def A236174(n):
        p = prime(n)
        for b in range(2,11):
            x, y, z = p, 0, 1
            while x >= b:
                x, r = divmod(x,b)
                y += r*z
                z *= 10
            y += x*z
            if isprime(y):
                return y # Chai Wah Wu, Jan 03 2015