A236181 Let x(1)x(2)... x(q) denote the decimal expansion of a number n with q odd. The sequence lists the squares n such that the central digit equals the sum of the other digits.
121, 484, 10201, 10816, 40804, 72900, 1002001, 1008016, 3059001, 4008004, 100020001, 100080016, 151290000, 210250000, 216090000, 234090000, 313290000, 400080004, 10000200001, 10000800016, 10210900401, 11003800201, 11020800400, 14101800001, 30101903001, 30310810000
Offset: 1
Examples
10201 = 101^2 is in the sequence because the central digit 2 equals the sum of the other digits 1+0+0+1.
Programs
-
Maple
with(numtheory):for n from 2 to 6 do:m:=2*n-2:m1:=floor(sqrt(10^m)):m2:=floor(sqrt(10^(m+1)-1)):for k1 from m1 to m2 do:k:=k1^2:x:=convert(k,base,10):n1:=nops(x):s:=sum('x[j]', 'j'=1..n1):s1:=s-x[n]:if x[n]=s1 then printf(`%d, `,k):else fi:od:od:
-
Mathematica
cdodQ[n_]:=Module[{id=IntegerDigits[n],len,cd},len=Length[id];cd=If[OddQ[len],id[[(len+1)/2]],9999]; Total[id]-cd==cd]; Select[Range[175000]^2,cdodQ] (* Harvey P. Dale, Aug 04 2024 *)
Comments