A236283 The number of orbits of triples of {1,2,...,n} under the action of the dihedral group of order 2n.
1, 4, 5, 10, 13, 20, 25, 34, 41, 52, 61, 74, 85, 100, 113, 130, 145, 164, 181, 202, 221, 244, 265, 290, 313, 340, 365, 394, 421, 452, 481, 514, 545, 580, 613, 650, 685, 724, 761, 802, 841, 884, 925, 970, 1013, 1060, 1105, 1154, 1201, 1252
Offset: 1
Examples
For n = 3 there are 5 orbits of triples: [[1,1,1], [2,2,2], [3,3,3]], [[1,1,2], [2,2,3], [1,1,3], [3,3,1], [3,3,2], [2,2,1]], [[1,2,1], [2,3,2], [1,3,1], [3,1,3], [3,2,3], [2,1,2]], [[1,2,2], [2,3,3], [1,3,3], [3,1,1], [3,2,2], [2,1,1]], [[1,2,3], [2,3,1], [1,3,2], [3,1,2], [3,2,1], [2,1,3]].
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Crossrefs
Cf. A236332 (4-tuples).
Programs
-
GAP
a:=function(n) local g,orbs; g:=DihedralGroup(IsPermGroup,2*n); orbs := OrbitsDomain(g, Tuples( [ 1 .. n ], 3), OnTuples ); return Size(orbs); end;;
-
PARI
a(n) = {(5 + 3*(-1)^n + 2*n^2)/4} \\ Andrew Howroyd, Jan 17 2020
Formula
Conjectures from Colin Barker, Jan 21 2014: (Start)
a(n) = (5 + 3*(-1)^n + 2*n^2)/4.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: -x*(2*x^3-3*x^2+2*x+1) / ((x-1)^3*(x+1)).
(End)
From Andrew Howroyd, Jan 17 2020: (Start)
The above conjectures are true and can be derived from the following formulas for even and odd n.
a(n) = (n-2)*(n + 2)/2 + 4 for even n.
a(n) = (n-1)*(n + 1)/2 + 1 for odd n.
(End)
Comments