cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236294 a(n) = max( a(n-1) + a(n-3), 2*a(n-2) ) - a(n-4), with a(0)=1, a(1)=1, a(2)=2, a(3)=3.

Original entry on oeis.org

1, 1, 2, 3, 3, 5, 6, 7, 9, 10, 12, 14, 15, 18, 20, 22, 25, 27, 30, 33, 35, 39, 42, 45, 49, 52, 56, 60, 63, 68, 72, 76, 81, 85, 90, 95, 99, 105, 110, 115, 121, 126, 132, 138, 143, 150, 156, 162, 169, 175, 182, 189, 195, 203, 210, 217, 225, 232, 240, 248, 255
Offset: 0

Views

Author

Michael Somos, Jan 21 2014

Keywords

Comments

Tropical version of Somos-4 sequence A006720.
Second difference is period 8 sequence [1, 0, -1, 2, -1, 0, 1, -1, ...]
The numerator of the g.f. is the reciprocal polynomial of the numerator of the g.f. of A220838.

Examples

			G.f. = 1 + x + 2*x^2 + 3*x^3 + 3*x^4 + 5*x^5 + 6*x^6 + 7*x^7 + 9*x^8 + ...
		

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x+x^2-x^4+2*x^5-x^6)/((1-x)^2*(1-x^8)))); // G. C. Greubel, Aug 07 2018
  • Mathematica
    CoefficientList[Series[(1-x+x^2-x^4+2*x^5-x^6)/((1-x)^2*(1-x^8)), {x, 0, 50}], x] (* G. C. Greubel, Aug 07 2018 *)
  • PARI
    {a(n) = if( n<-4, n = -8-n); if( n<0, -(n==-4), polcoeff( (1 - x + x^2 - x^4 + 2*x^5 - x^6) / ( (1 - x)^2 * (1 - x^8) ) + x * O(x^n), n))};
    

Formula

G.f.: (1 - x + x^2 - x^4 + 2*x^5 - x^6) / ( (1 - x)^2 * (1 - x^8) ).
a(n) = a(-8 - n) = A220838(n + 5) for all n in Z.
0 = (a(n+5) - 2*a(n+3) + a(n+1)) * (a(n+4) - 2*a(n+2) * a(n)) for all n in Z.