A241486 Primes p such that p+4, p+444 and p+4444 are also prime.
13, 19, 79, 103, 229, 307, 643, 853, 859, 937, 1087, 1213, 1297, 1423, 1567, 1609, 1867, 2347, 2389, 2473, 3163, 3463, 3919, 4003, 4153, 4783, 4969, 5077, 5347, 5413, 5479, 5647, 5689, 5857, 6733, 6907, 6967, 7933, 8269, 9277, 9337, 9463, 10687, 10729, 11083
Offset: 1
Keywords
Examples
a(1) = 13 is a prime: 13+4 = 17, 13+444 = 457 and 13+4444 = 4457 are also prime. a(2) = 19 is a prime: 19+4 = 23, 19+444 = 463 and 19+4444 = 4463 are also prime.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..10000
Programs
-
Maple
KD:= proc() local a,b,d,e; a:= ithprime(n); b:=a+4; d:=a+444; e:=a+4444;if isprime(b)and isprime(d)and isprime(e)then return (a): fi; end: seq(KD(), n=1..5000);
-
Mathematica
KD = {}; Do[p = Prime[n]; If[PrimeQ[p + 4] && PrimeQ[p + 444] && PrimeQ[p + 4444], AppendTo[KD, p]], {n, 5000}]; KD (* For the b-file*) c = 0; p = Prime[n]; Do[If[PrimeQ[p + 4] && PrimeQ[p + 444] && PrimeQ[p + 4444], c = c + 1; Print[c, " ", p]], {n, 1, 3*10^6}];
-
PARI
s=[]; forprime(p=2, 12000, if(isprime(p+4) && isprime(p+444) && isprime(p+4444), s=concat(s, p))); s \\ Colin Barker, Apr 25 2014
Comments