A236333 The (n-2)-th (n>=3) triple of terms gives coefficients of double trinomial P_n(x) = ((n-2)^2*x^2 + n*x + 2)/2 (see comment).
1, 3, 2, 4, 4, 2, 9, 5, 2, 16, 6, 2, 25, 7, 2, 36, 8, 2, 49, 9, 2, 64, 10, 2, 81, 11, 2, 100, 12, 2, 121, 13, 2, 144, 14, 2, 169, 15, 2, 196, 16, 2, 225, 17, 2, 256, 18, 2, 289, 19, 2, 324, 20, 2, 361, 21, 2, 400, 22, 2, 441, 23, 2, 484, 24, 2, 529, 25, 2, 576, 26, 2, 625, 27, 2, 676, 28, 2, 729, 29, 2
Offset: 3
Examples
Let n=5, k=4. Then G_5(k)=k*(3*k-1)/2 (Cf. A000326) and the double trinomial 2*P_5(x)= 9*x^2+5*x+2, P_5(4)=(9*4^2+5*4+2)/2=83, Thus, we have G_5(83)=G_5(82)+G_5(13), or 83*124 = 41*245 + 13*19 = 10292.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 3..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,3,0,0,-3,0,0,1).
Crossrefs
Programs
-
Magma
I:=[1,3,2,4,4,2,9,5,2]; [n le 9 select I[n] else 3*Self(n-3)-3*Self(n-6)+Self(n-9): n in [1..90]]; // Vincenzo Librandi, Feb 02 2014
-
Mathematica
a[n_]:=Which[Mod[n,3]==0,n^2/9,Mod[n,3]==1,(n+5)/3,True,2]; Map[a,Range[3,103]] CoefficientList[Series[(-1-3 x-2 x^2-x^3+5 x^4+4 x^5-2 x^7-2 x^8)/((-1+x)^3 (1+x+x^2)^3),{x,0,100}],x]
-
PARI
Vec(-x^3*(2*x^8+2*x^7-4*x^5-5*x^4+x^3+2*x^2+3*x+1)/((x-1)^3*(x^2+x+1)^3) + O(x^100)) \\ Colin Barker, Jan 23 2014
Formula
If n==0 (mod 3), then a(n) = n^2/9;
if n==1 (mod 3), then a(n) = (n+5)/3;
if n==2 (mod 3), then a(n) = 2.
G.f.: -x^3*(2*x^8+2*x^7-4*x^5-5*x^4+x^3+2*x^2+3*x+1) / ((x-1)^3*(x^2+x+1)^3). - Colin Barker, Jan 23 2014
Comments