cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A234741 a(n) is the base-2 carryless product of the prime factors of n; Encoding of the product of the polynomials over GF(2) represented by the prime factors of n (with multiplicity).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 5, 10, 11, 12, 13, 14, 15, 16, 17, 10, 19, 20, 9, 22, 23, 24, 17, 26, 15, 28, 29, 30, 31, 32, 29, 34, 27, 20, 37, 38, 23, 40, 41, 18, 43, 44, 17, 46, 47, 48, 21, 34, 51, 52, 53, 30, 39, 56, 53, 58, 59, 60, 61, 62, 27, 64, 57, 58, 67
Offset: 1

Views

Author

Antti Karttunen, Jan 22 2014

Keywords

Comments

"Encoding" means the number whose binary representation is given by the coefficients of the polynomial, e.g., 13=1101[2] encodes X^3+X^2+1. The product is the usual multiplication of polynomials in GF(2)[X] (or binary multiplication without carry-bits, cf. A048720).
a(n) <= n. [As all terms of the table A061858 are nonnegative]

Examples

			a(9) = a(3*3) = 5, as when we multiply 3 ('11' in binary) with itself, and discard the carry-bits, using XOR (A003987) instead of normal addition, we get:
   11
  110
-----
  101
that is, 5, as '101' is its binary representation. In other words, a(9) = a(3*3) = A048720(3,3) = 5.
Alternatively, 9 = 3*3, and 3=11[2] encodes the polynomial X+1, and (X+1)*(X+1) = X^2+1 in GF(2)[X], which is encoded as 101[2] = 5, therefore a(9) = 5. - _M. F. Hasler_, Feb 16 2014
		

Crossrefs

A235034 gives the k for which a(k)=k.
A236833(n) gives the number of times n occurs in this sequence.
A236841 gives the same sequence sorted and duplicates removed, A236834 gives the numbers that do not occur here, A236835 gives numbers that occur more than once.
A325562(n) gives the number of iterations needed before one of the fixed points (terms of A235034) is reached.

Programs

  • PARI
    A234741(n)={n=factor(n);n[,1]=apply(t->Pol(binary(t)),n[,1]);sum(i=1,#n=Vec(factorback(n))%2,n[i]<<(#n-i))} \\ M. F. Hasler, Feb 18 2014

Formula

a(0)=0, a(1)=1, and for n > 1, a(n) = A048720(A020639(n),a(n/A020639(n))). [A048720 used as a bivariate function]
Equally, for n with its unique prime factorization n = p_1 * ... * p_k, with the p_i not necessarily distinct primes, a(n) = p_1 x ... x p_k, where x stands for carryless multiplication defined in A048720, which is isomorphic to multiplication in GF(2)[X].
a(2n) = 2*a(n).
More generally, if A061858(x,y) = 0, then a(x*y) = a(x)*a(y).
a(A235034(n)) = A235034(n).
A236378(n) = n - a(n).

Extensions

Term a(0) = 0 removed and a new primary definition added by Antti Karttunen, May 10 2019

A061858 Differences between the ordinary multiplication table A004247 and the carryless multiplication table for GF(2)[X] polynomials A048720, i.e., the effect of the carry bits in binary multiplication.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 8, 0, 0, 0, 0, 0, 0, 12, 0, 8, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 16, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 24, 0, 0, 0
Offset: 0

Views

Author

Antti Karttunen, May 11 2001

Keywords

Examples

			From _Peter Munn_, Jan 28 2021: (Start)
The top left 12 X 12 corner of the table:
      |  0   1   2   3   4   5   6   7   8   9  10  11
------+------------------------------------------------
   0  |  0   0   0   0   0   0   0   0   0   0   0   0
   1  |  0   0   0   0   0   0   0   0   0   0   0   0
   2  |  0   0   0   0   0   0   0   0   0   0   0   0
   3  |  0   0   0   4   0   0   8  12   0   0   0   4
   4  |  0   0   0   0   0   0   0   0   0   0   0   0
   5  |  0   0   0   0   0   8   0   8   0   0  16  16
   6  |  0   0   0   8   0   0  16  24   0   0   0   8
   7  |  0   0   0  12   0   8  24  28   0   0  16  28
   8  |  0   0   0   0   0   0   0   0   0   0   0   0
   9  |  0   0   0   0   0   0   0   0   0  16   0  16
  10  |  0   0   0   0   0  16   0  16   0   0  32  32
  11  |  0   0   0   4   0  16   8  28   0  16  32  52
(End)
		

Crossrefs

"Zoomed in" variant: A061859.
Rows/columns 3, 5 and 7 are given by A048728, A048729, A048730.
Main diagonal divided by 4: A213673.
Numbers that generate no carries when multiplied in binary by 11_2: A003714, by 101_2: A048716, by 1001_2: A115845, by 10001_2: A115847, by 100001_2: A114086.
Other sequences related to the presence/absence of a carry in binary multiplication: A116361, A235034, A235040, A236378, A266195, A289726.

Formula

a(n) = A004247(n) - A048720(n).

A235034 Numbers whose prime divisors, when multiplied together without carry-bits (as encodings of GF(2)[X]-polynomials, with A048720), produce the original number; numbers for which A234741(n) = n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 22, 23, 24, 26, 28, 29, 30, 31, 32, 34, 37, 38, 40, 41, 43, 44, 46, 47, 48, 51, 52, 53, 56, 58, 59, 60, 61, 62, 64, 67, 68, 71, 73, 74, 76, 79, 80, 82, 83, 85, 86, 88, 89, 92, 94, 95, 96, 97, 101
Offset: 1

Views

Author

Antti Karttunen, Jan 02 2014

Keywords

Comments

If n is present, then 2n is present also, as shifting binary representation left never produces any carries.

Examples

			All primes occur in this sequence as no multiplication -> no need to add any intermediate products -> no carry bits produced.
Composite numbers like 15 are also present, as 15 = 3*5, and when these factors (with binary representations '11' and '101') are multiplied as:
   101
  1010
  ----
  1111 = 15
we see that the intermediate products 1*5 and 2*5 can be added together without producing any carry-bits (as they have no 1-bits in the same columns/bit-positions), so A048720(3,5) = 3*5 and thus 15 is included in this sequence.
		

Crossrefs

Gives the positions of zeros in A236378, i.e., n such that A234741(n) = n.
Intersection with A235035 gives A235032.
Other subsequences: A000040 (A091206 and also A091209), A045544 (A004729), A093641, A235040 (gives odd composites in this sequence), A235050, A235490.

A236379 How much n increases when it is remultiplied from GF(2)[X] to Z: a(n) = A234742(n) - n.

Original entry on oeis.org

0, 0, 0, 0, 0, 4, 0, 0, 0, 12, 8, 0, 0, 0, 0, 12, 0, 64, 24, 0, 16, 28, 0, 16, 0, 0, 0, 36, 0, 4, 24, 0, 0, 60, 128, 56, 48, 0, 0, 60, 32, 0, 56, 32, 0, 144, 32, 0, 0, 28, 0, 192, 0, 4, 72, 0, 0, 60, 8, 0, 48, 0, 0, 84, 0, 376, 120, 0, 256, 52, 112, 112, 96, 0, 0, 276, 0, 100, 120, 96, 64, 88, 0, 148, 112, 644, 64
Offset: 0

Views

Author

Antti Karttunen, Jan 24 2014

Keywords

Comments

All terms are divisible by 4.

Crossrefs

A235035 gives the positions of zeros.

Programs

Formula

a(n) = A234742(n) - n.
For all n, a(A091209(n)) > 0, and also a(A236844(n)) > 0 and a(A236835(n)) > 0.

A236380 Difference between value of n, when remultiplied "upward", from GF(2)[X] to N, and when remultiplied "downward", from N to GF(2)[X]: a(n) = A234742(n) - A234741(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 4, 0, 0, 0, 16, 8, 0, 0, 0, 0, 12, 0, 64, 32, 0, 16, 40, 0, 16, 0, 8, 0, 48, 0, 4, 24, 0, 0, 64, 128, 64, 64, 0, 0, 76, 32, 0, 80, 32, 0, 172, 32, 0, 0, 56, 16, 192, 0, 4, 96, 16, 0, 64, 8, 0, 48, 0, 0, 120, 0, 384, 128, 0, 256, 64, 128, 112, 128, 0, 0, 300, 0, 128, 152, 96, 64, 152, 0, 148, 160, 644, 64
Offset: 0

Views

Author

Antti Karttunen, Jan 24 2014

Keywords

Comments

All terms are divisible by 4.
a(n) = 0 iff both A236378(n) and A236379(n) are zero, or in other words, iff A234741(n)=n and A234742(n)=n, which means that A235032 gives all such n, that a(n) = 0.

Crossrefs

A235032 gives the positions of zeros, A235033 the positions of nonzeros.

Formula

a(n) = A234742(n) - A234741(n).
a(n) = A236378(n) + A236379(n).
Showing 1-5 of 5 results.