cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A014580 Binary irreducible polynomials (primes in the ring GF(2)[X]), evaluated at X=2.

Original entry on oeis.org

2, 3, 7, 11, 13, 19, 25, 31, 37, 41, 47, 55, 59, 61, 67, 73, 87, 91, 97, 103, 109, 115, 117, 131, 137, 143, 145, 157, 167, 171, 185, 191, 193, 203, 211, 213, 229, 239, 241, 247, 253, 283, 285, 299, 301, 313, 319, 333, 351, 355, 357, 361, 369, 375
Offset: 1

Views

Author

David Petry (petry(AT)accessone.com)

Keywords

Comments

Or, binary irreducible polynomials, interpreted as binary vectors, then written in base 10.
The numbers {a(n)} are a subset of the set {A206074}. - Thomas Ordowski, Feb 21 2014
2^n - 1 is a term if and only if n = 2 or n is a prime and 2 is a primitive root modulo n. - Jianing Song, May 10 2021
For odd k, k is a term if and only if binary_reverse(k) = A145341((k+1)/2) is. - Joerg Arndt and Jianing Song, May 10 2021

Examples

			x^4 + x^3 + 1 -> 16+8+1 = 25. Or, x^4 + x^3 + 1 -> 11001 (binary) = 25 (decimal).
		

Crossrefs

Written in binary: A058943.
Number of degree-n irreducible polynomials: A001037, see also A000031.
Multiplication table: A048720.
Characteristic function: A091225. Inverse: A091227. a(n) = A091202(A000040(n)). Almost complement of A091242. Union of A091206 & A091214 and also of A091250 & A091252. First differences: A091223. Apart from a(1) and a(2), a subsequence of A092246 and hence A000069.
Table of irreducible factors of n: A256170.
Irreducible polynomials satisfying particular conditions: A071642, A132447, A132449, A132453, A162570.
Factorization sentinel: A278239.
Sequences analyzing the difference between factorization into GF(2)[X] irreducibles and ordinary prime factorization of the corresponding integer: A234741, A234742, A235032, A235033, A235034, A235035, A235040, A236850, A325386, A325559, A325560, A325563, A325641, A325642, A325643.
Factorization-preserving isomorphisms: A091203, A091204, A235041, A235042.
See A115871 for sequences related to cross-domain congruences.
Functions based on the irreducibles: A305421, A305422.

Programs

  • Mathematica
    fQ[n_] := Block[{ply = Plus @@ (Reverse@ IntegerDigits[n, 2] x^Range[0, Floor@ Log2@ n])}, ply == Factor[ply, Modulus -> 2] && n != 2^Floor@ Log2@ n]; fQ[2] = True; Select[ Range@ 378, fQ] (* Robert G. Wilson v, Aug 12 2011 *)
    Reap[Do[If[IrreduciblePolynomialQ[IntegerDigits[n, 2] . x^Reverse[Range[0, Floor[Log[2, n]]]], Modulus -> 2], Sow[n]], {n, 2, 1000}]][[2, 1]] (* Jean-François Alcover, Nov 21 2016 *)
  • PARI
    is(n)=polisirreducible(Pol(binary(n))*Mod(1,2)) \\ Charles R Greathouse IV, Mar 22 2013

A234741 a(n) is the base-2 carryless product of the prime factors of n; Encoding of the product of the polynomials over GF(2) represented by the prime factors of n (with multiplicity).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 5, 10, 11, 12, 13, 14, 15, 16, 17, 10, 19, 20, 9, 22, 23, 24, 17, 26, 15, 28, 29, 30, 31, 32, 29, 34, 27, 20, 37, 38, 23, 40, 41, 18, 43, 44, 17, 46, 47, 48, 21, 34, 51, 52, 53, 30, 39, 56, 53, 58, 59, 60, 61, 62, 27, 64, 57, 58, 67
Offset: 1

Views

Author

Antti Karttunen, Jan 22 2014

Keywords

Comments

"Encoding" means the number whose binary representation is given by the coefficients of the polynomial, e.g., 13=1101[2] encodes X^3+X^2+1. The product is the usual multiplication of polynomials in GF(2)[X] (or binary multiplication without carry-bits, cf. A048720).
a(n) <= n. [As all terms of the table A061858 are nonnegative]

Examples

			a(9) = a(3*3) = 5, as when we multiply 3 ('11' in binary) with itself, and discard the carry-bits, using XOR (A003987) instead of normal addition, we get:
   11
  110
-----
  101
that is, 5, as '101' is its binary representation. In other words, a(9) = a(3*3) = A048720(3,3) = 5.
Alternatively, 9 = 3*3, and 3=11[2] encodes the polynomial X+1, and (X+1)*(X+1) = X^2+1 in GF(2)[X], which is encoded as 101[2] = 5, therefore a(9) = 5. - _M. F. Hasler_, Feb 16 2014
		

Crossrefs

A235034 gives the k for which a(k)=k.
A236833(n) gives the number of times n occurs in this sequence.
A236841 gives the same sequence sorted and duplicates removed, A236834 gives the numbers that do not occur here, A236835 gives numbers that occur more than once.
A325562(n) gives the number of iterations needed before one of the fixed points (terms of A235034) is reached.

Programs

  • PARI
    A234741(n)={n=factor(n);n[,1]=apply(t->Pol(binary(t)),n[,1]);sum(i=1,#n=Vec(factorback(n))%2,n[i]<<(#n-i))} \\ M. F. Hasler, Feb 18 2014

Formula

a(0)=0, a(1)=1, and for n > 1, a(n) = A048720(A020639(n),a(n/A020639(n))). [A048720 used as a bivariate function]
Equally, for n with its unique prime factorization n = p_1 * ... * p_k, with the p_i not necessarily distinct primes, a(n) = p_1 x ... x p_k, where x stands for carryless multiplication defined in A048720, which is isomorphic to multiplication in GF(2)[X].
a(2n) = 2*a(n).
More generally, if A061858(x,y) = 0, then a(x*y) = a(x)*a(y).
a(A235034(n)) = A235034(n).
A236378(n) = n - a(n).

Extensions

Term a(0) = 0 removed and a new primary definition added by Antti Karttunen, May 10 2019

A266195 Match-making permutation: start with a(1) = 1, then always choose for a(n) the least unused number such that multiplying a(n) by a(n-1) does not produce any carries when performed in base 2.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 12, 16, 11, 17, 13, 32, 14, 18, 20, 19, 33, 15, 34, 22, 64, 21, 24, 36, 28, 65, 23, 66, 25, 40, 35, 72, 42, 48, 37, 68, 26, 128, 27, 129, 29, 130, 30, 132, 31, 256, 38, 80, 49, 73, 56, 136, 41, 96, 69, 144, 67, 84, 97, 137, 112, 145, 134, 160, 50, 133, 76, 161, 100, 257, 39, 258, 43, 260, 44
Offset: 1

Views

Author

Antti Karttunen, Dec 26 2015

Keywords

Comments

More formally: the lexicographically earliest injection of natural numbers such that for any n > 1, A061858(a(n), a(n-1)) = 0; a(1) = 1. By necessity also surjective on N (see below for why), thus a bijection.
Less formally:
In this context we say that two positive natural numbers x and y "match", when they will not produce any carries when multiplied in binary system (see the Examples). The purpose of this sequence is with a simple greedy algorithm to form pairs of natural numbers that "match to each other" according to that criterion. Note that each number after 1 will satisfy the matching condition both with its predecessor and its successor.
For the sake of this discussion, we call a natural number n "dense" if the density of 1-bits in its binary representation (cf., e.g., A265917) is over a certain threshold, whose exact value we leave undefined, but can be subjectively gauged. In contrast, we call a number "ethereal" if its base-2 representation consists mostly of zeros. E.g., 258 = 100000010_2 is clearly one of the "ethereals", while 43 = 101011_2, is definitely on the denser side.
When running the algorithm, we note that after a while, for long stretches of time, it mostly matches "dense" numbers with "ethereal" numbers, like 258 and 43, which occur next to each other in the sequence as a(76) and a(77), and also a(49)=31 and a(50)=256, which are the most dense and most ethereal members of their respective binary sizes (see the Example section).
Also, it should be obvious that each number of the form 2^k (terms of A000079, the "super-ethereals") occur as the first representative of the numbers of the same binary length, and any number of the form (2^k)-1 (A000225, "super-dense") comes as the last of the numbers of binary length k.
No matter how dense some number might look to us, there is always a sufficiently ethereal number with which it can be mated (that is, the algorithm is never stuck, because it can always try the next unused super-ethereal 2^k if everything else fails). Moreover, whenever that next 2^k has appeared, it also always immediately picks up from the backlog of (more or less dense) numbers the least unmatched number so far, which proves that no number is left out, and the sequence is indeed a permutation of the natural numbers.
However, certain numbers intuitively feel to be much better matches to each other, like 10 and 12 (cf. Examples), because they are not so distant from each other. We define "good matches" to be such pairs that the binary length (A070939) of the numbers is equal. As 10 and 12 are both four bits long, they are one instance of such a good match. Note that 10 is also a good match with the immediately preceding number in the sequence, 9 = 1001_2.
Sequence A266197 gives the positions of these good matches, and A265748 & A265749 give their first and second members respectively. It is an open question whether the algorithm generates an infinite number of good matches or not.

Examples

			For n=11, we first note that a(10) = 10, and the least unused number after a(1) .. a(10) is 11. Trying to multiply 10 (= 1010_2) and 11 (= 1011_2), in the binary system results in
     1011
  *  1010
  -------
   c1011
  1011
  -------
  1101110 = 110,
and we see that there's a carry-bit (marked c) affecting the result, thus A048720(10,11) < 10*11 and A061858(10,10) > 0, thus we cannot select 11 for a(11).
The next unused number is 12, and indeed, for numbers 10 and 12 (= 1100_2), the binary multiplication results in
     1100
  *  1010
  -------
    1100
  1100
  -------
  1111000 = 120,
which is a clean product without carries (i.e., A061858(10,12) = 0), thus 12 is selected to be a match for 10, and we set a(11) = 12.
For a(49) = 31 (= 11111_2) and a(50) = 256 (= 100000000_2) the multiplication results in
      100000000
    *     11111
  -------------
      100000000
     100000000
    100000000
   100000000
  100000000
  -------------
  1111100000000 = 7936,
and we see that the carryless product is this time obtained almost trivially, as the other number is so much larger and more spacious than the other that they can easily avoid any clashing bits that would produce carries.
		

Crossrefs

Inverse permutation: A266196.
Cf. A266194 (products of these pairs).
Cf. A266197 (indices of good matches),
Cf. A265748, A265749 (give the first and second members of good matches).
Cf. A266186 (when 2^n appears), A266187 (when (2^n)-1 appears).
Cf. A266191, A266351 (similar permutations).
Cf. also A235034, A235035.

A235035 Numbers n for which A234742(n) = n: numbers n whose binary representation encodes a GF(2)[X]-polynomial such that when its irreducible factors are multiplied together as ordinary integers (with carry-bits), the result is n.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 11, 12, 13, 14, 16, 19, 22, 24, 25, 26, 28, 31, 32, 37, 38, 41, 44, 47, 48, 50, 52, 55, 56, 59, 61, 62, 64, 67, 73, 74, 76, 82, 87, 88, 91, 94, 96, 97, 100, 103, 104, 109, 110, 111, 112, 115, 117, 118, 122, 123, 124, 128, 131, 134, 137
Offset: 1

Views

Author

Antti Karttunen, Jan 02 2014

Keywords

Crossrefs

Gives the positions of zeros in A236379, i.e., n such that A234742(n) = n.
An intersection with A235034 gives A235032. Contains A014580 as a subsequence.

A061858 Differences between the ordinary multiplication table A004247 and the carryless multiplication table for GF(2)[X] polynomials A048720, i.e., the effect of the carry bits in binary multiplication.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 8, 0, 0, 0, 0, 0, 0, 12, 0, 8, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 16, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 24, 0, 0, 0
Offset: 0

Views

Author

Antti Karttunen, May 11 2001

Keywords

Examples

			From _Peter Munn_, Jan 28 2021: (Start)
The top left 12 X 12 corner of the table:
      |  0   1   2   3   4   5   6   7   8   9  10  11
------+------------------------------------------------
   0  |  0   0   0   0   0   0   0   0   0   0   0   0
   1  |  0   0   0   0   0   0   0   0   0   0   0   0
   2  |  0   0   0   0   0   0   0   0   0   0   0   0
   3  |  0   0   0   4   0   0   8  12   0   0   0   4
   4  |  0   0   0   0   0   0   0   0   0   0   0   0
   5  |  0   0   0   0   0   8   0   8   0   0  16  16
   6  |  0   0   0   8   0   0  16  24   0   0   0   8
   7  |  0   0   0  12   0   8  24  28   0   0  16  28
   8  |  0   0   0   0   0   0   0   0   0   0   0   0
   9  |  0   0   0   0   0   0   0   0   0  16   0  16
  10  |  0   0   0   0   0  16   0  16   0   0  32  32
  11  |  0   0   0   4   0  16   8  28   0  16  32  52
(End)
		

Crossrefs

"Zoomed in" variant: A061859.
Rows/columns 3, 5 and 7 are given by A048728, A048729, A048730.
Main diagonal divided by 4: A213673.
Numbers that generate no carries when multiplied in binary by 11_2: A003714, by 101_2: A048716, by 1001_2: A115845, by 10001_2: A115847, by 100001_2: A114086.
Other sequences related to the presence/absence of a carry in binary multiplication: A116361, A235034, A235040, A236378, A266195, A289726.

Formula

a(n) = A004247(n) - A048720(n).

A235032 Numbers which are factored to the same set of primes in Z as to the binary codes of irreducible polynomials in GF(2)[X].

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 11, 12, 13, 14, 16, 19, 22, 24, 26, 28, 31, 32, 37, 38, 41, 44, 47, 48, 52, 56, 59, 61, 62, 64, 67, 73, 74, 76, 82, 88, 94, 96, 97, 103, 104, 109, 111, 112, 118, 122, 123, 124, 128, 131, 134, 137, 146, 148, 152, 157, 164, 167, 176, 188
Offset: 1

Views

Author

Antti Karttunen, Jan 02 2014

Keywords

Comments

This is a subsequence of the sequence which gives all such n that A001222(n) = A091222(n).

Examples

			2, 3 and 11 are included in this sequence, because they occur in A091206. That is, they are all primes, and encode irreducible polynomials in ring GF(2)[X] via their binary representations: For 2, '10' in binary, corresponds to polynomial x, and for 3, '11' in binary, corresponds to polynomial x+1, and for 11, '1011' in binary, corresponds to polynomial x^3+x+1, which are all irreducible in GF(2)[X].
4 is included in this sequence, because it factors as 2*2, but also because the corresponding GF(2)[X] polynomial x^2 factors as x*x (with the polynomial x encoded by the number 2).
5 is NOT included in this sequence, because, although it is prime, the corresponding polynomial (5 in binary is '101'): x^2 + 1 is not irreducible in GF(2)[X], but factors as (x+1)(x+1), i.e., we have 5 = A048720(3,3).
111 is included, as it is a product of two primes, 3*37, and these primes encode via their binary representations, '11' and '100101', two polynomials irreducible in GF(2)[X]: x+1 and x^5 + x^2 + 1, whose product, x^6 + x^5 + x^3 + x^2 + x + 1, is encoded by 111's binary representation, '1101111'.
		

Crossrefs

Complement: A235033. Intersection of A235034 & A235035. Union of A091206 & A235036. Subsequence of A235045.
A235036 and A235039 give composite and odd composite (after 1) terms occurring in this sequence.
Gives the positions of zeros in A236380, i.e. such n that A234741(n) = A234742(n).
Cf. also A048720.

A235040 After 1, composite odd numbers, whose prime divisors, when multiplied together without carry-bits (as codes for GF(2)[X]-polynomials, with A048720), yield the same number back.

Original entry on oeis.org

1, 15, 51, 85, 95, 111, 119, 123, 187, 219, 221, 255, 335, 365, 411, 447, 485, 511, 629, 655, 685, 697, 771, 831, 879, 959, 965, 1011, 1139, 1241, 1285, 1405, 1535, 1563, 1649, 1731, 1779, 1799, 1923, 1983, 2005, 2019, 2031, 2045, 2227, 2605, 2735, 2815, 2827
Offset: 0

Views

Author

Antti Karttunen, Jan 02 2014

Keywords

Comments

Note: Start indexing from n=1 if you want just composite numbers. a(0)=1 is the only nonprime, noncomposite in this list.
The first term with three prime divisors is a(11) = 255 = 3*5*17.
The next terms with three prime divisors are
255, 3855, 13107, 21845, 24415, 28527, 30583, 31215, 31611, 31695, 32691, 48059, 56283, 56797, 61935, 65365, 87805, 98005, ...
Of these 24415 (= 5*19*257) is the first one with at least one prime factor that is not a Fermat prime (A019434).
The first term with four prime divisors is a(427) = 65535 = 3*5*17*257.
The first terms which are not multiples of any Fermat prime are: 511, 959, 3647, 4039, 4847, 5371, 7141, 7231, 7679, 7913, 8071, 9179, 12179, ... (511 = 7*73, 959 = 7*137, ...)

Examples

			15 = 3*5. When these factors (with binary representations '11' and '101') are multiplied as:
   101
  1010
  ----
  1111 = 15
we see that the intermediate products 1*5 and 2*5 can be added together without producing any carry-bits (as they have no 1-bits in the same columns/bit-positions), so A048720(3,5) = 3*5 and thus 15 is included in this sequence.
		

Crossrefs

Odd nonprimes in A235034. A235039 is a subsequence.
The composite terms in A045544 (A004729) all occur also here.

A236378 Difference between n and the result obtained when n is remultiplied from N to GF(2)[X]: a(n) = n - A234741(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 12, 0, 0, 0, 8, 0, 12, 0, 0, 0, 0, 0, 4, 0, 8, 16, 0, 0, 16, 0, 0, 24, 0, 0, 28, 0, 0, 0, 28, 16, 0, 0, 0, 24, 16, 0, 4, 0, 0, 0, 0, 0, 36, 0, 8, 8, 0, 0, 12, 16, 0, 32, 0, 0, 24, 0, 28, 32, 0, 0, 64, 0, 0, 48, 0, 0, 48, 0, 0, 56, 56, 0, 60
Offset: 0

Views

Author

Antti Karttunen, Jan 24 2014

Keywords

Comments

a(n) is the difference of n and the number obtained when the prime divisors of n are multiplied together in such a way that the carry-bits from intermediate products are discarded, as in A048720.
All terms are divisible by 4.

Crossrefs

Cf. A235034 (gives the positions of zeros).

A265748 First members of "good matches" produced by match-making permutation: a(n) = A266195(A266197(n)).

Original entry on oeis.org

2, 4, 5, 9, 10, 18, 20, 21, 40, 42, 48, 96, 67, 84, 145, 134, 148, 193, 168, 290, 268, 336, 296, 386, 328, 592, 580, 536, 584, 645, 552, 771, 585, 772, 656, 1184, 1156, 1104, 1542, 1096, 1031, 1160, 1072, 1161, 2069, 1544, 1312, 2368, 1288, 1170, 1792, 1216, 1290, 2340, 2240, 2309, 3136, 4480, 2144, 2185, 3104, 2193, 2062, 2320, 2208, 2313, 2210
Offset: 1

Views

Author

Antti Karttunen, Dec 26 2015

Keywords

Comments

Note that a number occurs both here and in A265749 if and only if it is a good match both with its predecessor and the successor in A266195.

Crossrefs

Cf. A265749 (for the latter member).
Cf. also A235034, A235035.

Programs

Formula

a(n) = A266195(A266197(n)).
Other identities. For all n >= 1:
A070939(a(n)) = A070939(A265749(n)). [By definition of "good match" in this context.]

A265749 Second members of "good matches" produced by match-making permutation: a(n) = A266195(1+A266197(n)).

Original entry on oeis.org

3, 5, 6, 10, 12, 20, 19, 24, 35, 48, 37, 69, 84, 97, 134, 160, 193, 164, 194, 268, 320, 385, 386, 297, 387, 770, 536, 641, 519, 608, 771, 648, 560, 594, 774, 1539, 1104, 1542, 1105, 1031, 1160, 1072, 1161, 1552, 2120, 1061, 1548, 3074, 1043, 1120, 1097, 1290, 1600, 2240, 2309, 3136, 2569, 4168, 2185, 3104, 2192, 2062, 2320, 2055, 2313, 2210, 3084
Offset: 1

Views

Author

Antti Karttunen, Dec 26 2015

Keywords

Comments

Note that a number occurs both here and in A265748 if it is a good match both with its precedent and the successor in A266195.

Crossrefs

Cf. A265748 (for the first member).
Cf. also A235034, A235035.

Programs

Formula

a(n) = A266195(1+A266197(n)).
Other identities. For all n >= 1:
A070939(a(n)) = A070939(A265748(n)). [By definition of "good match" in this context.]
Showing 1-10 of 11 results. Next