cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A014580 Binary irreducible polynomials (primes in the ring GF(2)[X]), evaluated at X=2.

Original entry on oeis.org

2, 3, 7, 11, 13, 19, 25, 31, 37, 41, 47, 55, 59, 61, 67, 73, 87, 91, 97, 103, 109, 115, 117, 131, 137, 143, 145, 157, 167, 171, 185, 191, 193, 203, 211, 213, 229, 239, 241, 247, 253, 283, 285, 299, 301, 313, 319, 333, 351, 355, 357, 361, 369, 375
Offset: 1

Views

Author

David Petry (petry(AT)accessone.com)

Keywords

Comments

Or, binary irreducible polynomials, interpreted as binary vectors, then written in base 10.
The numbers {a(n)} are a subset of the set {A206074}. - Thomas Ordowski, Feb 21 2014
2^n - 1 is a term if and only if n = 2 or n is a prime and 2 is a primitive root modulo n. - Jianing Song, May 10 2021
For odd k, k is a term if and only if binary_reverse(k) = A145341((k+1)/2) is. - Joerg Arndt and Jianing Song, May 10 2021

Examples

			x^4 + x^3 + 1 -> 16+8+1 = 25. Or, x^4 + x^3 + 1 -> 11001 (binary) = 25 (decimal).
		

Crossrefs

Written in binary: A058943.
Number of degree-n irreducible polynomials: A001037, see also A000031.
Multiplication table: A048720.
Characteristic function: A091225. Inverse: A091227. a(n) = A091202(A000040(n)). Almost complement of A091242. Union of A091206 & A091214 and also of A091250 & A091252. First differences: A091223. Apart from a(1) and a(2), a subsequence of A092246 and hence A000069.
Table of irreducible factors of n: A256170.
Irreducible polynomials satisfying particular conditions: A071642, A132447, A132449, A132453, A162570.
Factorization sentinel: A278239.
Sequences analyzing the difference between factorization into GF(2)[X] irreducibles and ordinary prime factorization of the corresponding integer: A234741, A234742, A235032, A235033, A235034, A235035, A235040, A236850, A325386, A325559, A325560, A325563, A325641, A325642, A325643.
Factorization-preserving isomorphisms: A091203, A091204, A235041, A235042.
See A115871 for sequences related to cross-domain congruences.
Functions based on the irreducibles: A305421, A305422.

Programs

  • Mathematica
    fQ[n_] := Block[{ply = Plus @@ (Reverse@ IntegerDigits[n, 2] x^Range[0, Floor@ Log2@ n])}, ply == Factor[ply, Modulus -> 2] && n != 2^Floor@ Log2@ n]; fQ[2] = True; Select[ Range@ 378, fQ] (* Robert G. Wilson v, Aug 12 2011 *)
    Reap[Do[If[IrreduciblePolynomialQ[IntegerDigits[n, 2] . x^Reverse[Range[0, Floor[Log[2, n]]]], Modulus -> 2], Sow[n]], {n, 2, 1000}]][[2, 1]] (* Jean-François Alcover, Nov 21 2016 *)
  • PARI
    is(n)=polisirreducible(Pol(binary(n))*Mod(1,2)) \\ Charles R Greathouse IV, Mar 22 2013

A234742 Product of the binary encodings of the irreducible factors (with multiplicity) of the polynomial over GF(2) whose encoding is n.

Original entry on oeis.org

0, 1, 2, 3, 4, 9, 6, 7, 8, 21, 18, 11, 12, 13, 14, 27, 16, 81, 42, 19, 36, 49, 22, 39, 24, 25, 26, 63, 28, 33, 54, 31, 32, 93, 162, 91, 84, 37, 38, 99, 72, 41, 98, 75, 44, 189, 78, 47, 48, 77, 50, 243, 52, 57, 126, 55, 56, 117, 66, 59, 108, 61, 62, 147, 64, 441
Offset: 0

Views

Author

Antti Karttunen, Jan 22 2014

Keywords

Comments

"Product" refers to the ordinary multiplication of integers.
Differs from A235042 and A236837 for the first time at n=25, where a(n)=25, while A235042(25)=5 and A236837(25)=0. Thus A234741(A234742(n)) = n up to n=24.
a(n) >= n. [All terms of the table A061858 are nonnegative as the product of multiplying two numbers with carries is never less than when multiplying them without carries.]
Specifically, for all n, a(A091209(n)) > A091209(n).
a(A091209(n)) is always composite and, by the above inequality, larger than A091209(n), which implies that none of the terms of A091209 occur in this sequence. Cf. also A236844.
Starting with various terms (primes) in A235033 and iterating the map A234742, we get 5 -> 9 -> 21 -> 49 -> 77 -> 177 -> 333 = a(333).
Another example: 17 -> 81 -> 169 -> 309 -> 721 = a(721).
Does every chain of such iterations eventually reach a fixed point? (One of the terms of A235035.) Or do some of them manage to avoid such "traps" indefinitely? (Note how the terms of A235035 seem to get rarer, but only rather slowly.)
Starting from 23, we get the sequence: 23, 39, 99, 279, 775, 1271, 3003, 26411, 45059, ... which reaches its fixed point, 3643749709604450870616156947649219, after 55 iterations. - M. F. Hasler, Feb 18 2014. [This is now sequence A244323. See also A260729, A260735 and A260441.] - Antti Karttunen, Aug 05 2015
Note also that when coming backwards from some term of such a chain by iterating A234741, we may not necessarily end at the same term we started from.

Examples

			3 has binary representation '11', which encodes the polynomial X + 1, which is irreducible in GF(2)[X], so the result is just a(3)=3.
5 has binary representation '101' which encodes the polynomial X^2 + 1, which is reducible in the polynomial ring GF(2)[X], factoring as (X+1)(X+1), i.e., 5 = A048720(3,3), as 3 ('11' in binary) encodes the polynomial (X+1), irreducible in GF(2)[X]. 3*3 = 9, thus a(5)=9.
9 has binary representation '1001', which encodes the polynomial X^3 + 1, which factors (in GF(2)[X]!) as (X+1)(X^2+X+1), i.e., 9 = A048720(3,7) (7, '111' in binary, encodes the other factor polynomial X^2+X+1). 3*7 = 21, thus a(9)=21.
25 has binary representation '11001', which encodes the polynomial X^4 + X^3 + 1, which is irreducible in GF(2)[X], so the result is just a(25)=25.
		

Crossrefs

A235035 gives the k for which a(k)=k.
A236853(n) gives the number of times n occurs in this sequence.
A236842 gives the same sequence sorted and with duplicates removed, A236844 gives the numbers that do not occur here, A236845 gives numbers that occur more than once, A236846 the least inverse and A236847 the greatest inverse. A236850 gives such k that a(k) = A236837(k).
Cf. also A260712, A260713, A260716 and A244323, A260729, A260735, A260441 (iterations starting from various terms of A236844).

Programs

Formula

To compute a(n): factor the polynomial over GF(2) encoded by n, into its irreducible factors; in other words, find a unique multiset of terms i, j, ..., k (not necessarily distinct) from A014580 for which i x j x ... x k = n, where x stands for the carryless multiplication A048720. Then a(n) = i*j*...*k is the product of those terms with ordinary multiplication. Because of the effect of the carry-bits in the latter, the result is always greater than or equal to n, so we have a(n) >= n for all n.
a(2n) = 2*a(n).
a(A235035(n)) = A235035(n).
A236379(n) = a(n) - n.
For all n, a(n) >= A236837(n).

A266195 Match-making permutation: start with a(1) = 1, then always choose for a(n) the least unused number such that multiplying a(n) by a(n-1) does not produce any carries when performed in base 2.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 12, 16, 11, 17, 13, 32, 14, 18, 20, 19, 33, 15, 34, 22, 64, 21, 24, 36, 28, 65, 23, 66, 25, 40, 35, 72, 42, 48, 37, 68, 26, 128, 27, 129, 29, 130, 30, 132, 31, 256, 38, 80, 49, 73, 56, 136, 41, 96, 69, 144, 67, 84, 97, 137, 112, 145, 134, 160, 50, 133, 76, 161, 100, 257, 39, 258, 43, 260, 44
Offset: 1

Views

Author

Antti Karttunen, Dec 26 2015

Keywords

Comments

More formally: the lexicographically earliest injection of natural numbers such that for any n > 1, A061858(a(n), a(n-1)) = 0; a(1) = 1. By necessity also surjective on N (see below for why), thus a bijection.
Less formally:
In this context we say that two positive natural numbers x and y "match", when they will not produce any carries when multiplied in binary system (see the Examples). The purpose of this sequence is with a simple greedy algorithm to form pairs of natural numbers that "match to each other" according to that criterion. Note that each number after 1 will satisfy the matching condition both with its predecessor and its successor.
For the sake of this discussion, we call a natural number n "dense" if the density of 1-bits in its binary representation (cf., e.g., A265917) is over a certain threshold, whose exact value we leave undefined, but can be subjectively gauged. In contrast, we call a number "ethereal" if its base-2 representation consists mostly of zeros. E.g., 258 = 100000010_2 is clearly one of the "ethereals", while 43 = 101011_2, is definitely on the denser side.
When running the algorithm, we note that after a while, for long stretches of time, it mostly matches "dense" numbers with "ethereal" numbers, like 258 and 43, which occur next to each other in the sequence as a(76) and a(77), and also a(49)=31 and a(50)=256, which are the most dense and most ethereal members of their respective binary sizes (see the Example section).
Also, it should be obvious that each number of the form 2^k (terms of A000079, the "super-ethereals") occur as the first representative of the numbers of the same binary length, and any number of the form (2^k)-1 (A000225, "super-dense") comes as the last of the numbers of binary length k.
No matter how dense some number might look to us, there is always a sufficiently ethereal number with which it can be mated (that is, the algorithm is never stuck, because it can always try the next unused super-ethereal 2^k if everything else fails). Moreover, whenever that next 2^k has appeared, it also always immediately picks up from the backlog of (more or less dense) numbers the least unmatched number so far, which proves that no number is left out, and the sequence is indeed a permutation of the natural numbers.
However, certain numbers intuitively feel to be much better matches to each other, like 10 and 12 (cf. Examples), because they are not so distant from each other. We define "good matches" to be such pairs that the binary length (A070939) of the numbers is equal. As 10 and 12 are both four bits long, they are one instance of such a good match. Note that 10 is also a good match with the immediately preceding number in the sequence, 9 = 1001_2.
Sequence A266197 gives the positions of these good matches, and A265748 & A265749 give their first and second members respectively. It is an open question whether the algorithm generates an infinite number of good matches or not.

Examples

			For n=11, we first note that a(10) = 10, and the least unused number after a(1) .. a(10) is 11. Trying to multiply 10 (= 1010_2) and 11 (= 1011_2), in the binary system results in
     1011
  *  1010
  -------
   c1011
  1011
  -------
  1101110 = 110,
and we see that there's a carry-bit (marked c) affecting the result, thus A048720(10,11) < 10*11 and A061858(10,10) > 0, thus we cannot select 11 for a(11).
The next unused number is 12, and indeed, for numbers 10 and 12 (= 1100_2), the binary multiplication results in
     1100
  *  1010
  -------
    1100
  1100
  -------
  1111000 = 120,
which is a clean product without carries (i.e., A061858(10,12) = 0), thus 12 is selected to be a match for 10, and we set a(11) = 12.
For a(49) = 31 (= 11111_2) and a(50) = 256 (= 100000000_2) the multiplication results in
      100000000
    *     11111
  -------------
      100000000
     100000000
    100000000
   100000000
  100000000
  -------------
  1111100000000 = 7936,
and we see that the carryless product is this time obtained almost trivially, as the other number is so much larger and more spacious than the other that they can easily avoid any clashing bits that would produce carries.
		

Crossrefs

Inverse permutation: A266196.
Cf. A266194 (products of these pairs).
Cf. A266197 (indices of good matches),
Cf. A265748, A265749 (give the first and second members of good matches).
Cf. A266186 (when 2^n appears), A266187 (when (2^n)-1 appears).
Cf. A266191, A266351 (similar permutations).
Cf. also A235034, A235035.

A235034 Numbers whose prime divisors, when multiplied together without carry-bits (as encodings of GF(2)[X]-polynomials, with A048720), produce the original number; numbers for which A234741(n) = n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 22, 23, 24, 26, 28, 29, 30, 31, 32, 34, 37, 38, 40, 41, 43, 44, 46, 47, 48, 51, 52, 53, 56, 58, 59, 60, 61, 62, 64, 67, 68, 71, 73, 74, 76, 79, 80, 82, 83, 85, 86, 88, 89, 92, 94, 95, 96, 97, 101
Offset: 1

Views

Author

Antti Karttunen, Jan 02 2014

Keywords

Comments

If n is present, then 2n is present also, as shifting binary representation left never produces any carries.

Examples

			All primes occur in this sequence as no multiplication -> no need to add any intermediate products -> no carry bits produced.
Composite numbers like 15 are also present, as 15 = 3*5, and when these factors (with binary representations '11' and '101') are multiplied as:
   101
  1010
  ----
  1111 = 15
we see that the intermediate products 1*5 and 2*5 can be added together without producing any carry-bits (as they have no 1-bits in the same columns/bit-positions), so A048720(3,5) = 3*5 and thus 15 is included in this sequence.
		

Crossrefs

Gives the positions of zeros in A236378, i.e., n such that A234741(n) = n.
Intersection with A235035 gives A235032.
Other subsequences: A000040 (A091206 and also A091209), A045544 (A004729), A093641, A235040 (gives odd composites in this sequence), A235050, A235490.

A235032 Numbers which are factored to the same set of primes in Z as to the binary codes of irreducible polynomials in GF(2)[X].

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 11, 12, 13, 14, 16, 19, 22, 24, 26, 28, 31, 32, 37, 38, 41, 44, 47, 48, 52, 56, 59, 61, 62, 64, 67, 73, 74, 76, 82, 88, 94, 96, 97, 103, 104, 109, 111, 112, 118, 122, 123, 124, 128, 131, 134, 137, 146, 148, 152, 157, 164, 167, 176, 188
Offset: 1

Views

Author

Antti Karttunen, Jan 02 2014

Keywords

Comments

This is a subsequence of the sequence which gives all such n that A001222(n) = A091222(n).

Examples

			2, 3 and 11 are included in this sequence, because they occur in A091206. That is, they are all primes, and encode irreducible polynomials in ring GF(2)[X] via their binary representations: For 2, '10' in binary, corresponds to polynomial x, and for 3, '11' in binary, corresponds to polynomial x+1, and for 11, '1011' in binary, corresponds to polynomial x^3+x+1, which are all irreducible in GF(2)[X].
4 is included in this sequence, because it factors as 2*2, but also because the corresponding GF(2)[X] polynomial x^2 factors as x*x (with the polynomial x encoded by the number 2).
5 is NOT included in this sequence, because, although it is prime, the corresponding polynomial (5 in binary is '101'): x^2 + 1 is not irreducible in GF(2)[X], but factors as (x+1)(x+1), i.e., we have 5 = A048720(3,3).
111 is included, as it is a product of two primes, 3*37, and these primes encode via their binary representations, '11' and '100101', two polynomials irreducible in GF(2)[X]: x+1 and x^5 + x^2 + 1, whose product, x^6 + x^5 + x^3 + x^2 + x + 1, is encoded by 111's binary representation, '1101111'.
		

Crossrefs

Complement: A235033. Intersection of A235034 & A235035. Union of A091206 & A235036. Subsequence of A235045.
A235036 and A235039 give composite and odd composite (after 1) terms occurring in this sequence.
Gives the positions of zeros in A236380, i.e. such n that A234741(n) = A234742(n).
Cf. also A048720.

A260712 Number of iterations of A234742 needed when started from n before a fixed point is reached.

Original entry on oeis.org

0, 0, 0, 0, 6, 0, 0, 0, 5, 6, 0, 0, 0, 0, 5, 0, 4, 5, 0, 6, 4, 0, 55, 0, 0, 0, 4, 0, 141, 5, 0, 0, 140, 4, 1, 5, 0, 0, 54, 6, 0, 4, 2, 0, 145, 55, 0, 0, 3, 0, 6, 0, 2, 4, 0, 0, 1, 141, 0, 5, 0, 0, 3, 0, 2, 140, 0, 4, 4, 1, 4, 5, 0, 0, 1, 0, 2, 54, 5, 6, 3, 0, 3, 4, 4, 2, 0, 0, 4, 145, 0, 55, 139, 0, 1, 0, 0, 3, 53, 0, 3, 6, 0, 0, 3, 2, 14, 4, 0
Offset: 1

Views

Author

Antti Karttunen, Aug 04 2015

Keywords

Comments

The fixed points of A234742 are in A235035, thus the latter gives the zeros of this sequence.
It is not known whether the sequence is well-defined for all values. For example, does a(455) or a(1361) have a finite value? Cf. sequences A260735 and A260441.

Crossrefs

Cf. A235035 (gives the positions of zeros).
Subsequences: A260713, A260716.

Programs

  • PARI
    allocatemem((2^30));
    A234742(n) = factorback(subst(lift(factor(Mod(1, 2)*Pol(binary(n)))), x, 2)); \\ After M. F. Hasler's Feb 18 2014 code.
    A260712(n) = {my(prev=-1,i=-1); until((n==prev), prev = n; n = A234742(n); i++); return(i); };
    for(n=1, 454, write("b260712.txt", n, " ", A260712(n)));
    
  • Scheme
    ;; Uses memoizing definec-macro.
    (definec (A260712 n) (let ((next (A234742 n))) (if (= next n) 0 (+ 1 (A260712 next)))))
    
  • Scheme
    (define (A260712loop n) (let loop ((n (A234742 n)) (prev_n n) (i 0)) (if (= n prev_n) i (loop (A234742 n) n (+ 1 i)))))

Formula

If A234742(n) = n, then a(n) = 0, otherwise a(n) = 1 + a(A234742(n)).
Other identities:
a(A235035(n)) = 0.
a(2n) = a(n).

A236379 How much n increases when it is remultiplied from GF(2)[X] to Z: a(n) = A234742(n) - n.

Original entry on oeis.org

0, 0, 0, 0, 0, 4, 0, 0, 0, 12, 8, 0, 0, 0, 0, 12, 0, 64, 24, 0, 16, 28, 0, 16, 0, 0, 0, 36, 0, 4, 24, 0, 0, 60, 128, 56, 48, 0, 0, 60, 32, 0, 56, 32, 0, 144, 32, 0, 0, 28, 0, 192, 0, 4, 72, 0, 0, 60, 8, 0, 48, 0, 0, 84, 0, 376, 120, 0, 256, 52, 112, 112, 96, 0, 0, 276, 0, 100, 120, 96, 64, 88, 0, 148, 112, 644, 64
Offset: 0

Views

Author

Antti Karttunen, Jan 24 2014

Keywords

Comments

All terms are divisible by 4.

Crossrefs

A235035 gives the positions of zeros.

Programs

Formula

a(n) = A234742(n) - n.
For all n, a(A091209(n)) > 0, and also a(A236844(n)) > 0 and a(A236835(n)) > 0.

A244323 Iterates of A234742, starting from value a(0) = 23, with a(1) = A234742(a(0)), a(2) = A234742(a(1)), etc.

Original entry on oeis.org

23, 39, 99, 279, 775, 1271, 3003, 26411, 45059, 53219, 96811, 180063, 538083, 1557987, 2994571, 5394027, 76600323, 78603291, 646326135, 5260930155, 11705029515, 55771437087, 918661840551, 2662267345431, 156054629431431, 1885162669463151, 2739827178329319, 23916267980687775, 343334160580618935
Offset: 0

Views

Author

Antti Karttunen and M. F. Hasler, Jul 23 2014

Keywords

Comments

The sequence reaches its fixed point at a(55) = 3643749709604450870616156947649219, after which the sequence stays constant, a(55) = a(56) = a(57), etc.

Crossrefs

Cf. also A260729, A260735, A260441 (other such iterations).

Programs

  • PARI
    A234742(n)=factorback(subst(lift(factor(Mod(1, 2)*Pol(binary(n)))), x, 2))+(n==1)
    iterates_of_A234742(start,filename) = {my(n=start,prev=-1,prevprev=-1,i=0); until((n==prevprev), write(filename, i, " ", n); prevprev = prev; prev = n; n = A234742(n); i++)} \\ Computes b-file up to the second occurrence of the fixed point.
    iterates_of_A234742(23,"b244323.txt")

A265748 First members of "good matches" produced by match-making permutation: a(n) = A266195(A266197(n)).

Original entry on oeis.org

2, 4, 5, 9, 10, 18, 20, 21, 40, 42, 48, 96, 67, 84, 145, 134, 148, 193, 168, 290, 268, 336, 296, 386, 328, 592, 580, 536, 584, 645, 552, 771, 585, 772, 656, 1184, 1156, 1104, 1542, 1096, 1031, 1160, 1072, 1161, 2069, 1544, 1312, 2368, 1288, 1170, 1792, 1216, 1290, 2340, 2240, 2309, 3136, 4480, 2144, 2185, 3104, 2193, 2062, 2320, 2208, 2313, 2210
Offset: 1

Views

Author

Antti Karttunen, Dec 26 2015

Keywords

Comments

Note that a number occurs both here and in A265749 if and only if it is a good match both with its predecessor and the successor in A266195.

Crossrefs

Cf. A265749 (for the latter member).
Cf. also A235034, A235035.

Programs

Formula

a(n) = A266195(A266197(n)).
Other identities. For all n >= 1:
A070939(a(n)) = A070939(A265749(n)). [By definition of "good match" in this context.]

A265749 Second members of "good matches" produced by match-making permutation: a(n) = A266195(1+A266197(n)).

Original entry on oeis.org

3, 5, 6, 10, 12, 20, 19, 24, 35, 48, 37, 69, 84, 97, 134, 160, 193, 164, 194, 268, 320, 385, 386, 297, 387, 770, 536, 641, 519, 608, 771, 648, 560, 594, 774, 1539, 1104, 1542, 1105, 1031, 1160, 1072, 1161, 1552, 2120, 1061, 1548, 3074, 1043, 1120, 1097, 1290, 1600, 2240, 2309, 3136, 2569, 4168, 2185, 3104, 2192, 2062, 2320, 2055, 2313, 2210, 3084
Offset: 1

Views

Author

Antti Karttunen, Dec 26 2015

Keywords

Comments

Note that a number occurs both here and in A265748 if it is a good match both with its precedent and the successor in A266195.

Crossrefs

Cf. A265748 (for the first member).
Cf. also A235034, A235035.

Programs

Formula

a(n) = A266195(1+A266197(n)).
Other identities. For all n >= 1:
A070939(a(n)) = A070939(A265748(n)). [By definition of "good match" in this context.]
Showing 1-10 of 12 results. Next