cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236423 Numbers k such that m^2 + k^2/m^2 is prime for every m|k.

Original entry on oeis.org

1, 2, 6, 10, 14, 26, 74, 94, 130, 134, 146, 170, 206, 326, 386, 466, 470, 634, 1094, 1354, 1570, 1654, 1766, 1966, 2174, 2766, 3046, 3254, 3274, 3446, 4006, 4174, 4666, 4754, 4954, 5086, 5774, 5834, 6046, 6866, 6926, 7114, 7466, 8854, 9046, 9494, 10006, 10126
Offset: 1

Views

Author

Thomas Ordowski, Jan 25 2014

Keywords

Comments

If n = x*y then x^2 + y^2 is a prime.
These n > 1 must be even and squarefree.
Conjecture: the set of such n is infinite.
The conjecture follows from, e.g., Schinzel's hypothesis H. - Charles R Greathouse IV, Jan 28 2014

Crossrefs

Cf. A080715.
Subsequence of A005574. - Michel Marcus, Jun 03 2017

Programs

  • Mathematica
    Select[Range[10^4], (d = Divisors[#]^2; And @@ PrimeQ[d + #^2/d]) &] (* Giovanni Resta, Jan 26 2014 *)
  • PARI
    isok(n) = sumdiv(n, d, isprime(d^2 + n^2/d^2)) == numdiv(n); \\ Michel Marcus, Jan 25 2014
    
  • PARI
    is(n)=if(n%4!=2, return(n==1)); my(f=factor(n)); if(vecmax(f[,2])>1,return(0)); fordiv(f,m,if(!isprime(m^2+(n/m)^2),return(0)); if(m^2>n,break));1 \\ Charles R Greathouse IV, Jan 28 2014

Extensions

More terms from Michel Marcus, Jan 25 2014