A236471 Riordan array ((1-x)/(1-2*x), x(1-x)/(1-2*x)^2).
1, 1, 1, 2, 4, 1, 4, 13, 7, 1, 8, 38, 33, 10, 1, 16, 104, 129, 62, 13, 1, 32, 272, 450, 304, 100, 16, 1, 64, 688, 1452, 1289, 590, 147, 19, 1, 128, 1696, 4424, 4942, 2945, 1014, 203, 22, 1, 256, 4096, 12896, 17584, 13073, 5823, 1603, 268, 25, 1, 512, 9728
Offset: 0
Examples
Triangle begins: 1; 1, 1; 2, 4, 1; 4, 13, 7, 1; 8, 38, 33, 10, 1; 16, 104, 129, 62, 13, 1; 32, 272, 450, 304, 100, 16, 1; 64, 688, 1452, 1289, 590, 147, 19, 1;
Links
- G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened
Programs
-
Mathematica
CoefficientList[CoefficientList[Series[(2*x^2-3*x+1)/((x^2-x)*y +4*x^2 - 4*x+1), {x,0,20}, {y,0,20}], x], y]//Flatten (* G. C. Greubel, Apr 19 2018 *)
-
Maxima
T(n,k):=sum(binomial(m+k,2*k)*binomial(n-1,n-m),m,0,n); /* Vladimir Kruchinin, Apr 21 2015 */
-
PARI
for(n=0,20, for(k=0,n, print1(sum(m=0, n, binomial(m+k,2*k)* binomial(n-1,n-m)), ", "))) \\ G. C. Greubel, Apr 19 2018
Formula
T(n,0) = A011782(n), T(n,1) = A049611(n), T(n,n) = A000012(n) = 1, T(n+1,n) = A016777(n), T(n+2,n) = A062708(n+1).
G.f.: (2*x^2-3*x+1)/((x^2-x)*y+4*x^2-4*x+1). - Vladimir Kruchinin, Apr 21 2015
T(n,k) = Sum_{m=0..n} C(m+k,2*k)*C(n-1,n-m). - Vladimir Kruchinin, Apr 21 2015
Comments