cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236471 Riordan array ((1-x)/(1-2*x), x(1-x)/(1-2*x)^2).

Original entry on oeis.org

1, 1, 1, 2, 4, 1, 4, 13, 7, 1, 8, 38, 33, 10, 1, 16, 104, 129, 62, 13, 1, 32, 272, 450, 304, 100, 16, 1, 64, 688, 1452, 1289, 590, 147, 19, 1, 128, 1696, 4424, 4942, 2945, 1014, 203, 22, 1, 256, 4096, 12896, 17584, 13073, 5823, 1603, 268, 25, 1, 512, 9728
Offset: 0

Views

Author

Philippe Deléham, Jan 26 2014

Keywords

Comments

Row sums are A052936(n).
Diagonal sums are A121449(n).
The triangle T'(n,k) = T(n,k)*(-1)^(n+k) is the inverse of the Riordan array in A090285.

Examples

			Triangle begins:
1;
1, 1;
2, 4, 1;
4, 13, 7, 1;
8, 38, 33, 10, 1;
16, 104, 129, 62, 13, 1;
32, 272, 450, 304, 100, 16, 1;
64, 688, 1452, 1289, 590, 147, 19, 1;
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[CoefficientList[Series[(2*x^2-3*x+1)/((x^2-x)*y +4*x^2 - 4*x+1), {x,0,20}, {y,0,20}], x], y]//Flatten (* G. C. Greubel, Apr 19 2018 *)
  • Maxima
    T(n,k):=sum(binomial(m+k,2*k)*binomial(n-1,n-m),m,0,n); /* Vladimir Kruchinin, Apr 21 2015 */
    
  • PARI
    for(n=0,20, for(k=0,n, print1(sum(m=0, n, binomial(m+k,2*k)* binomial(n-1,n-m)), ", "))) \\ G. C. Greubel, Apr 19 2018

Formula

T(n,0) = A011782(n), T(n,1) = A049611(n), T(n,n) = A000012(n) = 1, T(n+1,n) = A016777(n), T(n+2,n) = A062708(n+1).
G.f.: (2*x^2-3*x+1)/((x^2-x)*y+4*x^2-4*x+1). - Vladimir Kruchinin, Apr 21 2015
T(n,k) = Sum_{m=0..n} C(m+k,2*k)*C(n-1,n-m). - Vladimir Kruchinin, Apr 21 2015