A236473 Number of partitions into multiplicatively perfect numbers, cf. A007422.
1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 7, 8, 10, 10, 12, 12, 15, 17, 21, 22, 26, 27, 32, 35, 41, 44, 52, 55, 63, 68, 78, 85, 98, 105, 119, 128, 144, 156, 177, 191, 214, 231, 257, 277, 310, 335, 372, 402, 444, 478, 529, 571, 630, 681, 747, 804, 883, 951
Offset: 0
Keywords
Examples
a(10) = #{10, 8+1+1, 6+1+1+1+1, 10x1} = 4; a(11) = #{10+1, 8+1+1+1, 6+1+1+1+1+1, 11x1} = 4; a(12) = #{10+1+1, 8+1+1+1+1, 6+6, 6+6x1, 12x1} = 5; a(13) = #{10+1+1+1, 8+1+1+1+1+1, 6+6+1, 6+7x1, 13x1} = 5; a(14) = #{14, 10+1+1+1+1, 8+6, 8+6x1, 6+6+1+1, 6+8x1, 14x1} = 7; a(15) = #{15, 14+1, 10+1+1+1+1+1, 8+6+1, 8+7x1, 6+6+1+1+1, 6+9x1, 15x1} = 8; a(16) = #{15+1, 14+1+1, 10+6, 10+6x1, 8+8, 8+6+1+1, 8+8x1, 6+6+1+1+1+1, 6+10x1, 16x1} = 10.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Programs
-
Haskell
a236473 = p a007422_list where p _ 0 = 1 p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
-
Maple
with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*(add( `if`(tau(d)=4, d, 0), d=divisors(j))+1), j=1..n)/n) end: seq(a(n), n=0..100); # Alois P. Heinz, Mar 23 2017
-
Mathematica
a[n_] := a[n] = If[n == 0, 1, Sum[a[n-j]*(Sum[If[DivisorSigma[0, d] == 4, d, 0], {d, Divisors[j]}] + 1), {j, 1, n}]/n]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Apr 12 2017, after Alois P. Heinz *)