cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236473 Number of partitions into multiplicatively perfect numbers, cf. A007422.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 7, 8, 10, 10, 12, 12, 15, 17, 21, 22, 26, 27, 32, 35, 41, 44, 52, 55, 63, 68, 78, 85, 98, 105, 119, 128, 144, 156, 177, 191, 214, 231, 257, 277, 310, 335, 372, 402, 444, 478, 529, 571, 630, 681, 747, 804, 883, 951
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 26 2014

Keywords

Examples

			a(10) = #{10, 8+1+1, 6+1+1+1+1, 10x1} = 4;
a(11) = #{10+1, 8+1+1+1, 6+1+1+1+1+1, 11x1} = 4;
a(12) = #{10+1+1, 8+1+1+1+1, 6+6, 6+6x1, 12x1} = 5;
a(13) = #{10+1+1+1, 8+1+1+1+1+1, 6+6+1, 6+7x1, 13x1} = 5;
a(14) = #{14, 10+1+1+1+1, 8+6, 8+6x1, 6+6+1+1, 6+8x1, 14x1} = 7;
a(15) = #{15, 14+1, 10+1+1+1+1+1, 8+6+1, 8+7x1, 6+6+1+1+1, 6+9x1, 15x1} = 8;
a(16) = #{15+1, 14+1+1, 10+6, 10+6x1, 8+8, 8+6+1+1, 8+8x1, 6+6+1+1+1+1, 6+10x1, 16x1} = 10.
		

Programs

  • Haskell
    a236473 = p a007422_list where
       p _          0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*(add(
          `if`(tau(d)=4, d, 0), d=divisors(j))+1), j=1..n)/n)
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Mar 23 2017
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[a[n-j]*(Sum[If[DivisorSigma[0, d] == 4, d, 0], {d, Divisors[j]}] + 1), {j, 1, n}]/n];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Apr 12 2017, after Alois P. Heinz *)