cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236512 Primes whose representation in base (2), base (3), base (4) and base (5) are also prime when read in decimal.

Original entry on oeis.org

9241, 85303, 110581, 296011, 331081, 465523, 644353, 659371, 849943, 1108993, 1116163, 1210483, 2149471, 2469241, 2963923, 3409753, 3704203, 4451071, 4774801, 4978003, 5665213, 5674993, 5995021, 6507343, 6817501, 7529941, 7596373, 7693531, 7973653, 8320831, 8344681
Offset: 1

Views

Author

K. D. Bajpai, Jan 27 2014

Keywords

Examples

			9241 is in the sequence because it is prime. Its representation in base (2):{10010000011001}, base (3):{110200021}, base (4):{2100121} and base (5):{243431}, when read in decimal are also prime.
		

Crossrefs

Cf. A000040 (prime numbers), A065720 (primes: binary representation is also prime),
A236365 (primes: binary and octal representation is also prime).

Programs

  • Mathematica
    t={}; n=1; While[Length[t]<31,n=NextPrime[n]; If[PrimeQ[FromDigits[IntegerDigits[n,2]]]&&PrimeQ[FromDigits[IntegerDigits[n,3]]] &&PrimeQ[FromDigits[IntegerDigits[n,4]]]&&PrimeQ[FromDigits[IntegerDigits[n,5]]], AppendTo[t,n]]]; t
  • PARI
    default(primelimit,2^31)
    base_b(n, b) = {
      my(s=[], r, x=10);
      while(n>0,
        r = n%b;
        n = n\b;
        s = concat(r, s)
      );
      eval(Pol(s))
    }
    A236512(maxp) = {
      forprime(p=2, maxp,
        if(isprime(base_b(p, 2)) &&
           isprime(base_b(p, 3)) &&
           isprime(base_b(p, 4)) &&
           isprime(base_b(p, 5)), print1(p, ", ")
        )
      )
    }
    \\ Colin Barker, Jan 29 2014