A236512 Primes whose representation in base (2), base (3), base (4) and base (5) are also prime when read in decimal.
9241, 85303, 110581, 296011, 331081, 465523, 644353, 659371, 849943, 1108993, 1116163, 1210483, 2149471, 2469241, 2963923, 3409753, 3704203, 4451071, 4774801, 4978003, 5665213, 5674993, 5995021, 6507343, 6817501, 7529941, 7596373, 7693531, 7973653, 8320831, 8344681
Offset: 1
Examples
9241 is in the sequence because it is prime. Its representation in base (2):{10010000011001}, base (3):{110200021}, base (4):{2100121} and base (5):{243431}, when read in decimal are also prime.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..797
Crossrefs
Programs
-
Mathematica
t={}; n=1; While[Length[t]<31,n=NextPrime[n]; If[PrimeQ[FromDigits[IntegerDigits[n,2]]]&&PrimeQ[FromDigits[IntegerDigits[n,3]]] &&PrimeQ[FromDigits[IntegerDigits[n,4]]]&&PrimeQ[FromDigits[IntegerDigits[n,5]]], AppendTo[t,n]]]; t
-
PARI
default(primelimit,2^31) base_b(n, b) = { my(s=[], r, x=10); while(n>0, r = n%b; n = n\b; s = concat(r, s) ); eval(Pol(s)) } A236512(maxp) = { forprime(p=2, maxp, if(isprime(base_b(p, 2)) && isprime(base_b(p, 3)) && isprime(base_b(p, 4)) && isprime(base_b(p, 5)), print1(p, ", ") ) ) } \\ Colin Barker, Jan 29 2014