cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236570 Number of n-node simple unicyclic graphs.

Original entry on oeis.org

1, 3, 9, 25, 68, 185, 504, 1379, 3788, 10480, 29094, 81193, 227379, 639099, 1801394, 5091388, 14422301, 40939337, 116420959, 331622137, 946020596, 2702412657, 7729367873, 22132856218, 63444473053, 182046034559, 522841943138, 1502920139133
Offset: 3

Views

Author

Eric W. Weisstein, Jan 29 2014

Keywords

Crossrefs

The covering version is A372191, labeled A372195.
The labeled version is A372193.
Cf. A001429 (number of connected n-node unicyclic graphs), A005195.

Programs

  • Mathematica
    Needs["Combinatorica`"];nn = 20; t[x_] := Sum[a[n] x^n, {n, 1, nn}]; a[0] = 0;
    b = Drop[Flatten[
       sol = SolveAlways[
         0 == Series[
           t[x] - x Product[1/(1 - x^i)^ a[i], {i, 1, nn}], {x, 0, nn}],
         x]; Table[a[n], {n, 0, nn}] /. sol], 1];
    r[x_] := Sum[b[[n]] x^n, {n, 1, nn}]; c =
    Drop[Table[
        CoefficientList[
         Series[CycleIndex[DihedralGroup[n], s] /.
           Table[s[i] -> r[x^i], {i, 1, n}], {x, 0, nn}], x], {n, 3,
         nn}] // Total, 1];
    d[x_] := Sum[c[[n]] x^n, {n, 1, nn}]; f =
    Drop[CoefficientList[Series[r[x] - (r[x]^2 - r[x^2])/2, {x, 0, nn}],
       x], 1]; Drop[CoefficientList[
    Series[d[x] Product[1/(1 - x^i)^f[[i]], {i, 1, nn}], {x, 0, nn}], x],3] (* Geoffrey Critzer, Nov 16 2014 *)

Formula

G.f.: A(x)*B(x) where A(x) is the o.g.f. for A001429 and B(x) is the o.g.f. for A005195. - Geoffrey Critzer, Nov 16 2014
Partial sums of A372191. - Gus Wiseman, Apr 27 2024

Extensions

a(11)-a(30) from Geoffrey Critzer, Nov 16 2014