A236570 Number of n-node simple unicyclic graphs.
1, 3, 9, 25, 68, 185, 504, 1379, 3788, 10480, 29094, 81193, 227379, 639099, 1801394, 5091388, 14422301, 40939337, 116420959, 331622137, 946020596, 2702412657, 7729367873, 22132856218, 63444473053, 182046034559, 522841943138, 1502920139133
Offset: 3
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 3..500
- Eric Weisstein's World of Mathematics, Unicyclic Graph.
- Gus Wiseman, The a(6) = 25 graphs with a unique cycle.
Crossrefs
Programs
-
Mathematica
Needs["Combinatorica`"];nn = 20; t[x_] := Sum[a[n] x^n, {n, 1, nn}]; a[0] = 0; b = Drop[Flatten[ sol = SolveAlways[ 0 == Series[ t[x] - x Product[1/(1 - x^i)^ a[i], {i, 1, nn}], {x, 0, nn}], x]; Table[a[n], {n, 0, nn}] /. sol], 1]; r[x_] := Sum[b[[n]] x^n, {n, 1, nn}]; c = Drop[Table[ CoefficientList[ Series[CycleIndex[DihedralGroup[n], s] /. Table[s[i] -> r[x^i], {i, 1, n}], {x, 0, nn}], x], {n, 3, nn}] // Total, 1]; d[x_] := Sum[c[[n]] x^n, {n, 1, nn}]; f = Drop[CoefficientList[Series[r[x] - (r[x]^2 - r[x^2])/2, {x, 0, nn}], x], 1]; Drop[CoefficientList[ Series[d[x] Product[1/(1 - x^i)^f[[i]], {i, 1, nn}], {x, 0, nn}], x],3] (* Geoffrey Critzer, Nov 16 2014 *)
Formula
G.f.: A(x)*B(x) where A(x) is the o.g.f. for A001429 and B(x) is the o.g.f. for A005195. - Geoffrey Critzer, Nov 16 2014
Partial sums of A372191. - Gus Wiseman, Apr 27 2024
Extensions
a(11)-a(30) from Geoffrey Critzer, Nov 16 2014