A236574 Primes p with prime(p)^3 + 2*p^3 and p^3 + 2*prime(p)^3 both prime.
3, 79, 997, 2657, 3697, 4513, 6947, 8887, 9547, 16187, 22697, 26479, 31319, 37463, 39139, 39887, 43573, 43987, 45667, 47387, 47743, 47819, 48221, 54217, 56923, 57373, 74017, 74149, 74707, 75533, 93251, 100043
Offset: 1
Keywords
Examples
a(1) = 3 since prime(3)^3 + 2*3^3 = 125 + 54 = 179 and 3^3 + 2*prime(3)^3 = 27 + 2*125 = 277 are both prime, but 2^3 + 2*prime(2)^3 = 62 is composite.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- D. R. Heath-Brown, Primes represented by x^3 + 2y^3. Acta Mathematica 186 (2001), pp. 1-84.
Programs
-
Mathematica
p[n_]:=PrimeQ[Prime[n]^3+2*n^3]&&PrimeQ[n^3+2*Prime[n]^3] n=0;Do[If[p[Prime[k]],n=n+1;Print[n," ",Prime[k]]],{k,1,10000}] Select[Prime[Range[10000]],AllTrue[{Prime[#]^3+2*#^3,#^3+2*Prime[ #]^3}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Aug 20 2017 *)
Comments