cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236576 The number of tilings of a 5 X (3n) floor with 1 X 3 trominoes.

Original entry on oeis.org

1, 4, 22, 121, 664, 3643, 19987, 109657, 601624, 3300760, 18109345, 99355414, 545105209, 2990674357, 16408085929, 90021597712, 493896002842, 2709719309845, 14866649448256, 81564634762843, 447497579542135
Offset: 0

Views

Author

R. J. Mathar, Jan 29 2014

Keywords

Comments

Tilings are counted irrespective of internal symmetry: Tilings that match each other after rotations and/or reflections are counted with their multiplicity.

Crossrefs

Cf. A000930 (3 X n floor), A049086 (4 X 3n floor), A236577, A236578.

Programs

  • Maple
    g := (1-x)^2/(1-6*x+3*x^2-x^3) ;
    taylor(%,x=0,30) ;
    gfun[seriestolist](%) ;
  • Mathematica
    CoefficientList[Series[(1 - x)^2/(1 - 6 x + 3 x^2 - x^3), {x,0,50}], x] (* G. C. Greubel, Apr 29 2017 *)
    LinearRecurrence[{6, -3, 1}, {1, 4, 22}, 30] (* M. Poyraz Torcuk, Nov 06 2021 *)
  • PARI
    my(x='x+O('x^50)); Vec((1-x)^2/(1-6*x+3*x^2-x^3)) \\ G. C. Greubel, Apr 29 2017

Formula

G.f.: (1-x)^2/(1-6*x+3*x^2-x^3).
a(n) = 6*a(n-1) - 3*a(n-2) + a(n-3). - M. Poyraz Torcuk, Oct 24 2021